58,665 research outputs found
On Statistical Query Sampling and NMR Quantum Computing
We introduce a ``Statistical Query Sampling'' model, in which the goal of an
algorithm is to produce an element in a hidden set with
reasonable probability. The algorithm gains information about through
oracle calls (statistical queries), where the algorithm submits a query
function and receives an approximation to . We
show how this model is related to NMR quantum computing, in which only
statistical properties of an ensemble of quantum systems can be measured, and
in particular to the question of whether one can translate standard quantum
algorithms to the NMR setting without putting all of their classical
post-processing into the quantum system. Using Fourier analysis techniques
developed in the related context of {em statistical query learning}, we prove a
number of lower bounds (both information-theoretic and cryptographic) on the
ability of algorithms to produces an , even when the set is fairly
simple. These lower bounds point out a difficulty in efficiently applying NMR
quantum computing to algorithms such as Shor's and Simon's algorithm that
involve significant classical post-processing. We also explicitly relate the
notion of statistical query sampling to that of statistical query learning.
An extended abstract appeared in the 18th Aunnual IEEE Conference of
Computational Complexity (CCC 2003), 2003.
Keywords: statistical query, NMR quantum computing, lower boundComment: 17 pages, no figures. Appeared in 18th Aunnual IEEE Conference of
Computational Complexity (CCC 2003
A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization
Large-scale optimization problems that involve thousands of decision
variables have extensively arisen from various industrial areas. As a powerful
optimization tool for many real-world applications, evolutionary algorithms
(EAs) fail to solve the emerging large-scale problems both effectively and
efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA
that can not only produce high-quality solution by solving sub-problems
separately, but also highly utilizes the power of parallel computing by solving
the sub-problems simultaneously. Existing DC-based EAs that were deemed to
enjoy the same advantages of the proposed algorithm, are shown to be
practically incompatible with the parallel computing scheme, unless some
trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure
High-dimensional Black-box Optimization via Divide and Approximate Conquer
Divide and Conquer (DC) is conceptually well suited to high-dimensional
optimization by decomposing a problem into multiple small-scale sub-problems.
However, appealing performance can be seldom observed when the sub-problems are
interdependent. This paper suggests that the major difficulty of tackling
interdependent sub-problems lies in the precise evaluation of a partial
solution (to a sub-problem), which can be overwhelmingly costly and thus makes
sub-problems non-trivial to conquer. Thus, we propose an approximation
approach, named Divide and Approximate Conquer (DAC), which reduces the cost of
partial solution evaluation from exponential time to polynomial time.
Meanwhile, the convergence to the global optimum (of the original problem) is
still guaranteed. The effectiveness of DAC is demonstrated empirically on two
sets of non-separable high-dimensional problems.Comment: 7 pages, 2 figures, conferenc
- …