388 research outputs found
Designing A Composite Dictionary Adaptively From Joint Examples
We study the complementary behaviors of external and internal examples in
image restoration, and are motivated to formulate a composite dictionary design
framework. The composite dictionary consists of the global part learned from
external examples, and the sample-specific part learned from internal examples.
The dictionary atoms in both parts are further adaptively weighted to emphasize
their model statistics. Experiments demonstrate that the joint utilization of
external and internal examples leads to substantial improvements, with
successful applications in image denoising and super resolution
Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark
Psychological research results have confirmed that people can have different
emotional reactions to different visual stimuli. Several papers have been
published on the problem of visual emotion analysis. In particular, attempts
have been made to analyze and predict people's emotional reaction towards
images. To this end, different kinds of hand-tuned features are proposed. The
results reported on several carefully selected and labeled small image data
sets have confirmed the promise of such features. While the recent successes of
many computer vision related tasks are due to the adoption of Convolutional
Neural Networks (CNNs), visual emotion analysis has not achieved the same level
of success. This may be primarily due to the unavailability of confidently
labeled and relatively large image data sets for visual emotion analysis. In
this work, we introduce a new data set, which started from 3+ million weakly
labeled images of different emotions and ended up 30 times as large as the
current largest publicly available visual emotion data set. We hope that this
data set encourages further research on visual emotion analysis. We also
perform extensive benchmarking analyses on this large data set using the state
of the art methods including CNNs.Comment: 7 pages, 7 figures, AAAI 201
Collaborative Feature Learning from Social Media
Image feature representation plays an essential role in image recognition and
related tasks. The current state-of-the-art feature learning paradigm is
supervised learning from labeled data. However, this paradigm requires
large-scale category labels, which limits its applicability to domains where
labels are hard to obtain. In this paper, we propose a new data-driven feature
learning paradigm which does not rely on category labels. Instead, we learn
from user behavior data collected on social media. Concretely, we use the image
relationship discovered in the latent space from the user behavior data to
guide the image feature learning. We collect a large-scale image and user
behavior dataset from Behance.net. The dataset consists of 1.9 million images
and over 300 million view records from 1.9 million users. We validate our
feature learning paradigm on this dataset and find that the learned feature
significantly outperforms the state-of-the-art image features in learning
better image similarities. We also show that the learned feature performs
competitively on various recognition benchmarks
Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks
Sentiment analysis of online user generated content is important for many
social media analytics tasks. Researchers have largely relied on textual
sentiment analysis to develop systems to predict political elections, measure
economic indicators, and so on. Recently, social media users are increasingly
using images and videos to express their opinions and share their experiences.
Sentiment analysis of such large scale visual content can help better extract
user sentiments toward events or topics, such as those in image tweets, so that
prediction of sentiment from visual content is complementary to textual
sentiment analysis. Motivated by the needs in leveraging large scale yet noisy
training data to solve the extremely challenging problem of image sentiment
analysis, we employ Convolutional Neural Networks (CNN). We first design a
suitable CNN architecture for image sentiment analysis. We obtain half a
million training samples by using a baseline sentiment algorithm to label
Flickr images. To make use of such noisy machine labeled data, we employ a
progressive strategy to fine-tune the deep network. Furthermore, we improve the
performance on Twitter images by inducing domain transfer with a small number
of manually labeled Twitter images. We have conducted extensive experiments on
manually labeled Twitter images. The results show that the proposed CNN can
achieve better performance in image sentiment analysis than competing
algorithms.Comment: 9 pages, 5 figures, AAAI 201
EIGEN: Ecologically-Inspired GENetic Approach for Neural Network Structure Searching from Scratch
Designing the structure of neural networks is considered one of the most
challenging tasks in deep learning, especially when there is few prior
knowledge about the task domain. In this paper, we propose an
Ecologically-Inspired GENetic (EIGEN) approach that uses the concept of
succession, extinction, mimicry, and gene duplication to search neural network
structure from scratch with poorly initialized simple network and few
constraints forced during the evolution, as we assume no prior knowledge about
the task domain. Specifically, we first use primary succession to rapidly
evolve a population of poorly initialized neural network structures into a more
diverse population, followed by a secondary succession stage for fine-grained
searching based on the networks from the primary succession. Extinction is
applied in both stages to reduce computational cost. Mimicry is employed during
the entire evolution process to help the inferior networks imitate the behavior
of a superior network and gene duplication is utilized to duplicate the learned
blocks of novel structures, both of which help to find better network
structures. Experimental results show that our proposed approach can achieve
similar or better performance compared to the existing genetic approaches with
dramatically reduced computation cost. For example, the network discovered by
our approach on CIFAR-100 dataset achieves 78.1% test accuracy under 120 GPU
hours, compared to 77.0% test accuracy in more than 65, 536 GPU hours in [35].Comment: CVPR 201
Deep Networks for Image Super-Resolution with Sparse Prior
Deep learning techniques have been successfully applied in many areas of
computer vision, including low-level image restoration problems. For image
super-resolution, several models based on deep neural networks have been
recently proposed and attained superior performance that overshadows all
previous handcrafted models. The question then arises whether large-capacity
and data-driven models have become the dominant solution to the ill-posed
super-resolution problem. In this paper, we argue that domain expertise
represented by the conventional sparse coding model is still valuable, and it
can be combined with the key ingredients of deep learning to achieve further
improved results. We show that a sparse coding model particularly designed for
super-resolution can be incarnated as a neural network, and trained in a
cascaded structure from end to end. The interpretation of the network based on
sparse coding leads to much more efficient and effective training, as well as a
reduced model size. Our model is evaluated on a wide range of images, and shows
clear advantage over existing state-of-the-art methods in terms of both
restoration accuracy and human subjective quality
- …