125 research outputs found
Bleomycin A6-loaded anionic liposomes with <i>in situ</i> gel as a new antitumoral drug delivery system
<p>The goal is to develop an <i>in situ</i> gel system comprising anionic liposomes (AL) containing bleomycin A6 (BLM A6) dispersed within the thermosensitive <i>in situ</i> gel for sustained release. The results indicated that the gelation temperature decreased due to AL within gel. Similarly, viscosity and mechanical parameters, such as gel strength for gel, could be enhanced by inducing lipid material with negative charge (phosphatidylglycerol) at 37 °C, which provided against corrosion at physiological condition. The <i>in vitro</i> release experiments performed with a dialysis method revealed that <i>in situ</i> gel with AL exhibited the longer drug-release period compared to that with or without nonionic liposomes. An <i>in vivo</i> fluorescence imaging study suggested that the gel with AL loading FITC-BLM A6 stayed in administration site at least for five days. A thermosensitive <i>in situ</i> gel with anionic liposome was a promising carrier for hydrophilic BLM A6, to be used in parenteral delivery system for anti-tumor treatment.</p
Comparative spatio-temporal module.
Accurate bike-sharing demand prediction is crucial for bike allocation rebalancing and station planning. In bike-sharing systems, the bike borrowing and returning behavior exhibit strong spatio-temporal characteristics. Meanwhile, the bike-sharing demand is affected by the arbitrariness of user behavior, which makes the distribution of bikes unbalanced. These bring great challenges to bike-sharing demand prediction. In this study, a usage pattern similarity-based dual-network for bike-sharing demand prediction, called FF-STGCN, is proposed. Inter-station flow features and similar usage pattern features are fully considered. The model includes three modules: multi-scale spatio-temporal feature fusion module, bike usage pattern similarity learning module, and bike-sharing demand prediction module. In particular, we design a multi-scale spatio-temporal feature fusion module to address limitations in multi-scale spatio-temporal accuracy. Then, a bike usage pattern similarity learning module is constructed to capture the underlying correlated features among stations. Finally, we employ a dual network structure to integrate inter-station flow features and similar usage pattern features in the bike-sharing demand prediction module to realize the final prediction. Experiments on the Citi Bike dataset have demonstrated the effectiveness of our proposed model. The ablation experiments further confirm the indispensability of each module in the proposed model.</div
Performance comparison across models.
Accurate bike-sharing demand prediction is crucial for bike allocation rebalancing and station planning. In bike-sharing systems, the bike borrowing and returning behavior exhibit strong spatio-temporal characteristics. Meanwhile, the bike-sharing demand is affected by the arbitrariness of user behavior, which makes the distribution of bikes unbalanced. These bring great challenges to bike-sharing demand prediction. In this study, a usage pattern similarity-based dual-network for bike-sharing demand prediction, called FF-STGCN, is proposed. Inter-station flow features and similar usage pattern features are fully considered. The model includes three modules: multi-scale spatio-temporal feature fusion module, bike usage pattern similarity learning module, and bike-sharing demand prediction module. In particular, we design a multi-scale spatio-temporal feature fusion module to address limitations in multi-scale spatio-temporal accuracy. Then, a bike usage pattern similarity learning module is constructed to capture the underlying correlated features among stations. Finally, we employ a dual network structure to integrate inter-station flow features and similar usage pattern features in the bike-sharing demand prediction module to realize the final prediction. Experiments on the Citi Bike dataset have demonstrated the effectiveness of our proposed model. The ablation experiments further confirm the indispensability of each module in the proposed model.</div
Comparative metrics of bike usage patterns similarity.
Comparative metrics of bike usage patterns similarity.</p
Green innovation index system of heavy pollution industry.
Green innovation index system of heavy pollution industry.</p
Comparative spatio-temporal module.
Accurate bike-sharing demand prediction is crucial for bike allocation rebalancing and station planning. In bike-sharing systems, the bike borrowing and returning behavior exhibit strong spatio-temporal characteristics. Meanwhile, the bike-sharing demand is affected by the arbitrariness of user behavior, which makes the distribution of bikes unbalanced. These bring great challenges to bike-sharing demand prediction. In this study, a usage pattern similarity-based dual-network for bike-sharing demand prediction, called FF-STGCN, is proposed. Inter-station flow features and similar usage pattern features are fully considered. The model includes three modules: multi-scale spatio-temporal feature fusion module, bike usage pattern similarity learning module, and bike-sharing demand prediction module. In particular, we design a multi-scale spatio-temporal feature fusion module to address limitations in multi-scale spatio-temporal accuracy. Then, a bike usage pattern similarity learning module is constructed to capture the underlying correlated features among stations. Finally, we employ a dual network structure to integrate inter-station flow features and similar usage pattern features in the bike-sharing demand prediction module to realize the final prediction. Experiments on the Citi Bike dataset have demonstrated the effectiveness of our proposed model. The ablation experiments further confirm the indispensability of each module in the proposed model.</div
Irregular convolution.
Accurate bike-sharing demand prediction is crucial for bike allocation rebalancing and station planning. In bike-sharing systems, the bike borrowing and returning behavior exhibit strong spatio-temporal characteristics. Meanwhile, the bike-sharing demand is affected by the arbitrariness of user behavior, which makes the distribution of bikes unbalanced. These bring great challenges to bike-sharing demand prediction. In this study, a usage pattern similarity-based dual-network for bike-sharing demand prediction, called FF-STGCN, is proposed. Inter-station flow features and similar usage pattern features are fully considered. The model includes three modules: multi-scale spatio-temporal feature fusion module, bike usage pattern similarity learning module, and bike-sharing demand prediction module. In particular, we design a multi-scale spatio-temporal feature fusion module to address limitations in multi-scale spatio-temporal accuracy. Then, a bike usage pattern similarity learning module is constructed to capture the underlying correlated features among stations. Finally, we employ a dual network structure to integrate inter-station flow features and similar usage pattern features in the bike-sharing demand prediction module to realize the final prediction. Experiments on the Citi Bike dataset have demonstrated the effectiveness of our proposed model. The ablation experiments further confirm the indispensability of each module in the proposed model.</div
Green innovation efficiency of China’s heavy-pollution industries in 2009–2018.
Green innovation efficiency of China’s heavy-pollution industries in 2009–2018.</p
Comparative analysis metrics of similar bike usage patterns.
Comparative analysis metrics of similar bike usage patterns.</p
Spatial similarity between stations.
Accurate bike-sharing demand prediction is crucial for bike allocation rebalancing and station planning. In bike-sharing systems, the bike borrowing and returning behavior exhibit strong spatio-temporal characteristics. Meanwhile, the bike-sharing demand is affected by the arbitrariness of user behavior, which makes the distribution of bikes unbalanced. These bring great challenges to bike-sharing demand prediction. In this study, a usage pattern similarity-based dual-network for bike-sharing demand prediction, called FF-STGCN, is proposed. Inter-station flow features and similar usage pattern features are fully considered. The model includes three modules: multi-scale spatio-temporal feature fusion module, bike usage pattern similarity learning module, and bike-sharing demand prediction module. In particular, we design a multi-scale spatio-temporal feature fusion module to address limitations in multi-scale spatio-temporal accuracy. Then, a bike usage pattern similarity learning module is constructed to capture the underlying correlated features among stations. Finally, we employ a dual network structure to integrate inter-station flow features and similar usage pattern features in the bike-sharing demand prediction module to realize the final prediction. Experiments on the Citi Bike dataset have demonstrated the effectiveness of our proposed model. The ablation experiments further confirm the indispensability of each module in the proposed model.</div
- …