2,074 research outputs found
Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching
Leveraging on the recent developments in convolutional neural networks
(CNNs), matching dense correspondence from a stereo pair has been cast as a
learning problem, with performance exceeding traditional approaches. However,
it remains challenging to generate high-quality disparities for the inherently
ill-posed regions. To tackle this problem, we propose a novel cascade CNN
architecture composing of two stages. The first stage advances the recently
proposed DispNet by equipping it with extra up-convolution modules, leading to
disparity images with more details. The second stage explicitly rectifies the
disparity initialized by the first stage; it couples with the first-stage and
generates residual signals across multiple scales. The summation of the outputs
from the two stages gives the final disparity. As opposed to directly learning
the disparity at the second stage, we show that residual learning provides more
effective refinement. Moreover, it also benefits the training of the overall
cascade network. Experimentation shows that our cascade residual learning
scheme provides state-of-the-art performance for matching stereo
correspondence. By the time of the submission of this paper, our method ranks
first in the KITTI 2015 stereo benchmark, surpassing the prior works by a
noteworthy margin.Comment: Accepted at ICCVW 2017. The first two authors contributed equally to
this pape
- …