8,030 research outputs found
A Compact Third-order Gas-kinetic Scheme for Compressible Euler and Navier-Stokes Equations
In this paper, a compact third-order gas-kinetic scheme is proposed for the
compressible Euler and Navier-Stokes equations. The main reason for the
feasibility to develop such a high-order scheme with compact stencil, which
involves only neighboring cells, is due to the use of a high-order gas
evolution model. Besides the evaluation of the time-dependent flux function
across a cell interface, the high-order gas evolution model also provides an
accurate time-dependent solution of the flow variables at a cell interface.
Therefore, the current scheme not only updates the cell averaged conservative
flow variables inside each control volume, but also tracks the flow variables
at the cell interface at the next time level. As a result, with both cell
averaged and cell interface values the high-order reconstruction in the current
scheme can be done compactly. Different from using a weak formulation for
high-order accuracy in the Discontinuous Galerkin (DG) method, the current
scheme is based on the strong solution, where the flow evolution starting from
a piecewise discontinuous high-order initial data is precisely followed. The
cell interface time-dependent flow variables can be used for the initial data
reconstruction at the beginning of next time step. Even with compact stencil,
the current scheme has third-order accuracy in the smooth flow regions, and has
favorable shock capturing property in the discontinuous regions. Many test
cases are used to validate the current scheme. In comparison with many other
high-order schemes, the current method avoids the use of Gaussian points for
the flux evaluation along the cell interface and the multi-stage Runge-Kutta
time stepping technique.Comment: 27 pages, 38 figure
Strain engineering on graphene towards tunable and reversible hydrogenation
Graphene is the extreme material for molecular sensory and hydrogen storage
applications because of its two-dimensional geometry and unique
structure-property relationship. In this Letter, hydrogenation of graphene is
discussed in the extent of intercoupling between mechanical deformation and
electronic configuration. Our first principles calculation reveals that the
atomic structures, binding energies, mechanical and electronic properties of
graphene are significantly modified by the hydrogenation and applied strain.
Under an in-plane strain of 10 %, the binding energies of hydrogen on graphene
can be improved by 53.89 % and 23.56 % in the symmetric and anti-symmetric
phase respectively. Furthermore the instability of symmetrically bound hydrogen
atoms under compression suggests a reversible storage approach of hydrogen. In
the anti-symmetric phase, the binding of hydrogen breaks the sp2 characteristic
of graphene, which can be partly recovered at tensile strain. A charge density
based analysis unveils the underline mechanisms. The results reported here
offer a way not only to tune the binding of hydrogen on graphene in a
controllable and reversible manner, but also to engineer the properties of
graphene through a synergistic control through mechanical loads and hydrogen
doping
A Comparative Study of an Asymptotic Preserving Scheme and Unified Gas-kinetic Scheme in Continuum Flow Limit
Asymptotic preserving (AP) schemes are targeting to simulate both continuum
and rarefied flows. Many AP schemes have been developed and are capable of
capturing the Euler limit in the continuum regime. However, to get accurate
Navier-Stokes solutions is still challenging for many AP schemes. In order to
distinguish the numerical effects of different AP schemes on the simulation
results in the continuum flow limit, an implicit-explicit (IMEX) AP scheme and
the unified gas kinetic scheme (UGKS) based on Bhatnagar-Gross-Krook (BGk)
kinetic equation will be applied in the flow simulation in both transition and
continuum flow regimes. As a benchmark test case, the lid-driven cavity flow is
used for the comparison of these two AP schemes. The numerical results show
that the UGKS captures the viscous solution accurately. The velocity profiles
are very close to the classical benchmark solutions. However, the IMEX AP
scheme seems have difficulty to get these solutions. Based on the analysis and
the numerical experiments, it is realized that the dissipation of AP schemes in
continuum limit is closely related to the numerical treatment of collision and
transport of the kinetic equation. Numerically it becomes necessary to couple
the convection and collision terms in both flux evaluation at a cell interface
and the collision source term treatment inside each control volume
- …