5 research outputs found

    High-Performance Photoelectrochemical Enzymatic Bioanalysis Based on a 3D Porous Cu<sub><i>x</i></sub>O@TiO<sub>2</sub> Film with a Solid–Liquid–Air Triphase Interface

    No full text
    The accurate detection of H2O2 is crucial in oxidase-based cathodic photoelectrochemical enzymatic bioanalysis but will be easily compromised in the conventional photoelectrode–electrolyte diphase system due to the fluctuation of oxygen levels and the similar reduction potential between oxygen and H2O2. Herein, a solid–liquid–air triphase bio-photocathode based on a superhydrophobic three-dimensional (3D) porous micro–nano-hierarchical structured CuxO@TiO2 film that was constructed by controlling the wettability of the electrode surface is reported. The triphase photoelectrochemical system ensures an oxygen-rich interface microenvironment with constant and sufficiently high oxygen concentration. Moreover, the 3D porous micro–nano-hierarchical structures possess abundant active catalytic sites and a multidimensional electron transport pathway. The synergistic effect of the improved oxygen supply and the photoelectrode architecture greatly stabilizes and enhances the kinetics of the enzymatic reaction and H2O2 cathodic reaction, resulting in a 60-fold broader linear detection range and a higher accuracy compared with the conventional solid–liquid diphase system

    Oriented Assembled TiO<sub>2</sub> Hierarchical Nanowire Arrays with Fast Electron Transport Properties

    No full text
    Developing high surface area nanostructured electrodes with rapid charge transport is essential for artificial photosynthesis, solar cells, photocatalysis, and energy storage devices. Substantial research efforts have been recently focused on building one-dimensional (1D) nanoblocks with fast charge transport into three-dimensional (3D) hierarchical architectures. However, except for the enlargement in surface area, there is little experimental evidence of fast electron transport in these 3D nanostructure-based solar cells. In this communication, we report single-crystal-like 3D TiO<sub>2</sub> branched nanowire arrays consisting of 1D branch epitaxially grown from the primary trunk. These 3D branched nanoarrays not only demonstrate 71% enlargement in large surface area (compared with 1D nanowire arrays) but also exhibit fast charge transport property (comparable to that in 1D single crystal nanoarrays), leading to 52% improvement in solar conversion efficiency. The orientated 3D assembly strategy reported here can be extended to assemble other metal oxides with one or multiple components and thus represents a critical avenue toward high-performance optoelectronics

    High-Performance Photoelectronic Sensor Using Mesostructured ZnO Nanowires

    No full text
    Semiconductor photoelectrodes that simultaneously possess rapid charge transport and high surface area are highly desirable for efficient charge generation and collection in photoelectrochemical devices. Herein, we report mesostructured ZnO nanowires (NWs) that not only demonstrate a surface area as high as 50.7 m<sup>2</sup>/g, comparable to that of conventional nanoparticles (NPs), but also exhibit a 100 times faster electron transport rate than that in NP films. Moreover, using the comparison between NWs and NPs as an exploratory platform, we show that the synergistic effect between rapid charge transport and high surface area leads to a high performance photoelectronic formaldehyde sensor that exhibits a detection limit of as low as 5 ppb and a response of 1223% (at 10 ppm), which are, respectively, over 100 times lower and 20 times higher than those of conventional NPs-based device. Our work establishes a foundational pathway toward a better photoelectronic system by materials design

    [101Ě…0] Oriented Multichannel ZnO Nanowire Arrays with Enhanced Optoelectronic Device Performance

    No full text
    Crystallographic orientation and microstructure of metal oxide nanomaterials have great impact on their properties and applications. Here, we report [101̅0] oriented ZnO nanowire (NW) arrays with a multichannel mesostructure. The NW has a preferential growth of low energy (101̅0) crystal plane and exhibits 2–3 orders of magnitude faster electron transport rate than that in nanoparticle (NP) films. Furthermore, the surface area of the as-prepared NW arrays is about 5 times larger than that of conventional NW arrays with similar thickness. These lead to the highest power conversion efficiency of ZnO NW array-based sensitized solar cells. We anticipate that the unique crystallographic orientation and mesostructure will endow ZnO NW arrays new properties and expand their application fields

    Enhanced Photocatalytic Reaction at Air–Liquid–Solid Joint Interfaces

    No full text
    Semiconductor photocatalysis has long been considered as a promising approach for water pollution remediation. However, limited by the recombination of electrons and holes, low kinetics of photocatalysts and slow reaction rate impede large-scale applications. Herein, we addressed this limitation by developing a triphase photocatalytic system in which a photocatalytic reaction is carried out at air–liquid–solid joint interfaces. Such a triphase system allows the rapid delivery of oxygen, a natural electron scavenger, from air to the reaction interface. This enables the efficient removal of photogenerated electrons from the photocatalyst surface and minimization of electron–hole recombination even at high light intensities, thereby resulting in an approximate 10-fold enhancement in the photocatalytic reaction rate as compared to a conventional liquid/solid diphase system. The triphase system appears an enabling platform for understanding and maximizing photocatalyst kinetics, aiding in the application of semiconductor photocatalysis
    corecore