9 research outputs found

    Discovery of Novel d‑(+)-Biotin-Conjugated Resorcinol Dibenzyl Ether-Based PD-L1 Inhibitors for Targeted Cancer Immunotherapy

    No full text
    In this work, we rationally designed, synthesized, and evaluated a series of novel d-(+)-biotin-conjugated PD-L1 inhibitors for targeted cancer therapy. Among them, SWS1 exhibited the highest anti-PD-1/PD-L1 activity with an IC50 of 1.8 nM. In addition, SWS1 dose-dependently promoted tumor cell death in a HepG2/Jurkat cell co-culture model. Importantly, SWS1 displayed high antitumor efficacy in a B16-F10 mouse model with tumor growth inhibition of 66.1%, which was better than that of P18 (44.3%). Furthermore, SWS1 exerted antitumor effects by increasing the number of tumor-infiltrating lymphocytes and reducing the expression of PD-L1 in tumor tissues. Moreover, tissue distribution studies revealed a substantial accumulation of SWS1 in tumors (404.1 ng/mL). Lastly, the safety profiles of SWS1 were better (e.g., less immune-mediated colitis) than those of P18, indicating the advantages of biotin-enabled tumor targeting capability. Taken together, our results suggest that these novel tumor-targeted PD-L1 inhibitors are worthy of further investigation as potential anticancer agents for targeted cancer immunotherap

    Discovery of Novel d‑(+)-Biotin-Conjugated Resorcinol Dibenzyl Ether-Based PD-L1 Inhibitors for Targeted Cancer Immunotherapy

    No full text
    In this work, we rationally designed, synthesized, and evaluated a series of novel d-(+)-biotin-conjugated PD-L1 inhibitors for targeted cancer therapy. Among them, SWS1 exhibited the highest anti-PD-1/PD-L1 activity with an IC50 of 1.8 nM. In addition, SWS1 dose-dependently promoted tumor cell death in a HepG2/Jurkat cell co-culture model. Importantly, SWS1 displayed high antitumor efficacy in a B16-F10 mouse model with tumor growth inhibition of 66.1%, which was better than that of P18 (44.3%). Furthermore, SWS1 exerted antitumor effects by increasing the number of tumor-infiltrating lymphocytes and reducing the expression of PD-L1 in tumor tissues. Moreover, tissue distribution studies revealed a substantial accumulation of SWS1 in tumors (404.1 ng/mL). Lastly, the safety profiles of SWS1 were better (e.g., less immune-mediated colitis) than those of P18, indicating the advantages of biotin-enabled tumor targeting capability. Taken together, our results suggest that these novel tumor-targeted PD-L1 inhibitors are worthy of further investigation as potential anticancer agents for targeted cancer immunotherap

    Discovery of Novel d‑(+)-Biotin-Conjugated Resorcinol Dibenzyl Ether-Based PD-L1 Inhibitors for Targeted Cancer Immunotherapy

    No full text
    In this work, we rationally designed, synthesized, and evaluated a series of novel d-(+)-biotin-conjugated PD-L1 inhibitors for targeted cancer therapy. Among them, SWS1 exhibited the highest anti-PD-1/PD-L1 activity with an IC50 of 1.8 nM. In addition, SWS1 dose-dependently promoted tumor cell death in a HepG2/Jurkat cell co-culture model. Importantly, SWS1 displayed high antitumor efficacy in a B16-F10 mouse model with tumor growth inhibition of 66.1%, which was better than that of P18 (44.3%). Furthermore, SWS1 exerted antitumor effects by increasing the number of tumor-infiltrating lymphocytes and reducing the expression of PD-L1 in tumor tissues. Moreover, tissue distribution studies revealed a substantial accumulation of SWS1 in tumors (404.1 ng/mL). Lastly, the safety profiles of SWS1 were better (e.g., less immune-mediated colitis) than those of P18, indicating the advantages of biotin-enabled tumor targeting capability. Taken together, our results suggest that these novel tumor-targeted PD-L1 inhibitors are worthy of further investigation as potential anticancer agents for targeted cancer immunotherap

    Discovery of Novel d‑(+)-Biotin-Conjugated Resorcinol Dibenzyl Ether-Based PD-L1 Inhibitors for Targeted Cancer Immunotherapy

    No full text
    In this work, we rationally designed, synthesized, and evaluated a series of novel d-(+)-biotin-conjugated PD-L1 inhibitors for targeted cancer therapy. Among them, SWS1 exhibited the highest anti-PD-1/PD-L1 activity with an IC50 of 1.8 nM. In addition, SWS1 dose-dependently promoted tumor cell death in a HepG2/Jurkat cell co-culture model. Importantly, SWS1 displayed high antitumor efficacy in a B16-F10 mouse model with tumor growth inhibition of 66.1%, which was better than that of P18 (44.3%). Furthermore, SWS1 exerted antitumor effects by increasing the number of tumor-infiltrating lymphocytes and reducing the expression of PD-L1 in tumor tissues. Moreover, tissue distribution studies revealed a substantial accumulation of SWS1 in tumors (404.1 ng/mL). Lastly, the safety profiles of SWS1 were better (e.g., less immune-mediated colitis) than those of P18, indicating the advantages of biotin-enabled tumor targeting capability. Taken together, our results suggest that these novel tumor-targeted PD-L1 inhibitors are worthy of further investigation as potential anticancer agents for targeted cancer immunotherap

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics

    Discovery of Novel Heterotricyclic Compounds as DNA-Dependent Protein Kinase (DNA-PK) Inhibitors with Enhanced Chemosensitivity, Oral Bioavailability, and the Ability to Potentiate Cancer Immunotherapy

    No full text
    In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16–F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics
    corecore