6 research outputs found
Reply to comment by Lu et al. on âAn efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulationsâ
This document addresses the comments raised by Lu et al. (2017). Lu et al. (2017) proposed an alternative numerical treatment for implementing the fully implicit friction discretization in Xia et al. (2017). The method by Lu et al. (2017) is also effective, but not necessarily easier to implement or more efficient. The numerical wiggles observed by Lu et al. (2017) do not affect the overall solution accuracy of the surface reconstruction method (SRM). SRM introduces an antidiffusion effect, which may also lead to more accurate numerical predictions than hydrostatic reconstruction (HR) but may be the cause of the numerical wiggles. As suggested by Lu et al. (2017), HR may perform equally well if fine enough grids are used, which has been investigated and recognized in the literature. However, the use of refined meshes in simulations will inevitably increase computational cost and the grid sizes as suggested are too small for real-world applications
An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations
Numerical models solving the full 2-D shallow water equations (SWEs) have been increasingly used to simulate overland flows and better understand the transient flow dynamics of flash floods in a catchment. However, there still exist key challenges that have not yet been resolved for the development of fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accuracy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research challenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method (SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water overland flow model is first validated against analytical and experimental test cases and then applied to simulate a hypothetic rainfall event in the 42 km2Haltwhistle Burn, UK
City-scale hydrodynamic modelling of urban flash floods: the issues of scale and resolution
Hydrodynamic models have been widely used in urban flood modelling. Due to the prohibitive computational cost, most of urban flood simulations have been currently carried out at low spatial resolution or in small localised domains, leading to unreliable predictions. With the recent advance in high-performance computing technologies, GPU-accelerated hydrodynamic models are now capable of performing high-resolution simulations at a city scale. This paper presents a multi-GPU hydrodynamic model applied to reproduce a flood event in a 267.4Â km2 urbanised domain in Fuzhou, Fujian Province, China. At 2Â m resolution, the simulation is completed in nearly real time, demonstrating the efficiency and robustness of the model for high-resolution flood modelling. The model is used to further investigate the effects of varying spatial resolution and using localised domains on the simulation results. It is recommended that urban flood simulations should be performed at resolutions higher than 5Â m and localised simulations may introduce unacceptable numerical errors
A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS)
Full-scale fluvial flood modelling over large catchments has traditionally been carried out using coupled hydrological and hydraulic/hydrodynamic models. Such a traditional modelling approach is not well suited for the simulation of extreme floods induced by intense rainfall, which is usually featured with highly transient and dynamic rainfall-runoff and flooding process. This work aims to develop and demonstrate a modelling framework to predict the full-scale process of fluvial flooding from the source (rainfall) to impact (inundation) over a large catchment using a single high-performance hydrodynamic model driven by rainfall inputs. The modelling framework is applied to reproduce the flood event caused by the 2015 Storm Desmond in the 2500 km2 Eden Catchment at 5 m resolution. Without intensive model calibration, the predicted results compare well with field observations in terms of inundation extent and gauged water levels across the catchment. Sensitivity tests reveal that high-resolution grid is essential for accurate simulation of fluvial flood events using a 2D hydrodynamic model. Accelerated by multiple modern GPUs, the simulation is more than 2.5 times faster than real time although it involves 100 million computational cells inside the computational domain. This work provides a novel and promising approach to assess and forecast at real time the risk of extreme fluvial floods from intense rainfall
Realâtime flood forecasting based on a highâperformance 2D hydrodynamic model and numerical weather predictions
A flood forecasting system commonly consists of at least two essential components, i.e., a numerical weather prediction (NWP) model to provide rainfall forecasts and a hydrological/hydraulic model to predict the hydrological response. Whilst being widely used for flood forecasting, hydrological models only provide a simplified representation of the physical processes of flooding due to negligence of strict momentum conservation. They cannot reliably predict the highly transient flooding process from intense rainfall, in which case a fully 2D hydrodynamic model is required. Due to high computational demand, hydrodynamic models have not been exploited to support realâtime flood forecasting across a large catchment at sufficiently high resolution. To fill the current research and practical gaps, this work develops a new forecasting system by coupling a graphics processing unit (GPU) accelerated hydrodynamic model with NWP products to provide highâresolution, catchmentâscale forecasting of rainfallârunoff and flooding processes induced by intense rainfall. The performance of this new forecasting system is tested and confirmed by applying it to âforecastâ an extreme flood event across a 2,500 km2 catchment at 10 m resolution. Quantitative comparisons are made between the numerical predictions and field measurements in terms of water level and flood extent. To produce simulation results comparing well with the observations, the new flood forecasting system provides 34 hours of lead time when the weather forecasts are available 36 hours beforehand. Numerical experiments further confirm that uncertainties from the rainfall inputs are not amplified by the hydrodynamic model towards the final flood forecasting outputs in this case
RealâTime Flood Forecasting Based on a HighâPerformance 2âD Hydrodynamic Model and Numerical Weather Predictions
A flood forecasting system commonly consists of at least two essential components, i.e., a numerical weather prediction (NWP) model to provide rainfall forecasts and a hydrological/hydraulic model to predict the hydrological response. Whilst being widely used for flood forecasting, hydrological models only provide a simplified representation of the physical processes of flooding due to negligence of strict momentum conservation. They cannot reliably predict the highly transient flooding process from intense rainfall, in which case a fully 2D hydrodynamic model is required. Due to high computational demand, hydrodynamic models have not been exploited to support realâtime flood forecasting across a large catchment at sufficiently high resolution. To fill the current research and practical gaps, this work develops a new forecasting system by coupling a graphics processing unit (GPU) accelerated hydrodynamic model with NWP products to provide highâresolution, catchmentâscale forecasting of rainfallârunoff and flooding processes induced by intense rainfall. The performance of this new forecasting system is tested and confirmed by applying it to âforecastâ an extreme flood event across a 2,500 km2 catchment at 10 m resolution. Quantitative comparisons are made between the numerical predictions and field measurements in terms of water level and flood extent. To produce simulation results comparing well with the observations, the new flood forecasting system provides 34 hours of lead time when the weather forecasts are available 36 hours beforehand. Numerical experiments further confirm that uncertainties from the rainfall inputs are not amplified by the hydrodynamic model towards the final flood forecasting outputs in this case