11 research outputs found
Towards a multidimensional model of creativity: an analysis of six models of creativity and the creative process
Creativity appears repeatedly in the curricula for the Compulsory School and the Upper Secondary School in Sweden, as well as in the course syllabi for Art Education.
The purpose of this essay is to achieve a better understanding of the building blocks of creativity, in order to widen the range of tools that can be used in teaching situations. Departing from six established models of understanding creativity, the essay attempts to find some common aspects among the models, which can help teachers to unify and organize the models with the ultimate aim of achieving a wider and more comprehensive understanding of creativity.
Close reading is used as the method of analysis and interpretation in order to find common categories among the selected models of creativity. The process of close reading is performed and organized using the structure and concepts of Qualitative Content Analysis (QCA), with an inductive approach.
The analysis of the six models of creativity results in the identification and classification of two common themes: flexibility and bird’s eye view, the combination of which can be used as a way to achieve a more comprehensive, complete and thus enhanced model to understand creativity, which can give teachers a wider range of tools to apply creatively in the classroom
Three different systems of two noninteracting parts
<p><strong>Figure 1.</strong> Three different systems of two noninteracting parts. A composite reservoir (two grey circular plates) mediates between the two parts of the system. A blue plate stands for a cavity field while a red plate represents an atomic ensemble. A line denotes the system–reservoir interaction. (a) A dual atomic reservoir enters between two cavity fields [<a href="http://iopscience.iop.org/0953-4075/46/18/185501/article#jpb474929bib27" target="_blank">27</a>]. (b) A dual cavity reservoir is used between two atomic ensembles [<a href="http://iopscience.iop.org/0953-4075/46/18/185501/article#jpb474929bib32" target="_blank">32</a>]. (c) An atom–cavity reservoir mediates between an atomic ensemble and a cavity field. The last scheme has not been explored yet and will be addressed in the present work.</p> <p><strong>Abstract</strong></p> <p>We show that it is possible to use an atom–cavity reservoir to prepare the two-mode squeezed and entangled states of a hybrid system of an atomic ensemble and an optical field, which do not directly interact with each other. The essential mechanism is based on the combined effect of a two-mode squeezing interaction and a beam–splitter interaction between the system and the reservoir. The reservoir mechanism is important for quantum networking in that it allows an interface between a localized matter-based memory and an optical carrier of quantum information without direct interaction.</p
Variance 〈(δ<em>X</em><sub>+</sub>)<sup>2</sup>〉 versus <em>r</em><sub>1</sub> for the fixed collective phase Φ = 0
<p><strong>Figure 5.</strong> Variance 〈(δ<em>X</em><sub>+</sub>)<sup>2</sup>〉 versus <em>r</em><sub>1</sub> for the fixed collective phase Φ = 0. The other parameters are <em>q</em> = (0, 0.2, 0.5, 1, 5, 10). (a) <em>s</em> = 0.5, (b) <em>s</em> = 1, (c) <em>s</em> = 2, and (d) <em>s</em> = 5. The curves for <em>q</em> = (1, 5, 10) can hardly be distinguished. The variance drops below the standard quantum limit 1 in a wide range of parameters. This indicates the existence of the two-mode squeezing and entanglement under loose conditions.</p> <p><strong>Abstract</strong></p> <p>We show that it is possible to use an atom–cavity reservoir to prepare the two-mode squeezed and entangled states of a hybrid system of an atomic ensemble and an optical field, which do not directly interact with each other. The essential mechanism is based on the combined effect of a two-mode squeezing interaction and a beam–splitter interaction between the system and the reservoir. The reservoir mechanism is important for quantum networking in that it allows an interface between a localized matter-based memory and an optical carrier of quantum information without direct interaction.</p
Direct interaction between the atomic ensemble and the cavity field
<p><strong>Figure 8.</strong> Direct interaction between the atomic ensemble and the cavity field. The system is off far one-photon resonances but on the Raman resonance.</p> <p><strong>Abstract</strong></p> <p>We show that it is possible to use an atom–cavity reservoir to prepare the two-mode squeezed and entangled states of a hybrid system of an atomic ensemble and an optical field, which do not directly interact with each other. The essential mechanism is based on the combined effect of a two-mode squeezing interaction and a beam–splitter interaction between the system and the reservoir. The reservoir mechanism is important for quantum networking in that it allows an interface between a localized matter-based memory and an optical carrier of quantum information without direct interaction.</p
A hybrid system of the atomic ensemble <em>a</em> (red, placed within the ring cavity <em>C</em><sub>1</sub>) and the cavity field <em>c</em> (blue, propagating along the ring cavity <em>C</em><sub>2</sub>)
<p><strong>Figure 2.</strong> A hybrid system of the atomic ensemble <em>a</em> (red, placed within the ring cavity <em>C</em><sub>1</sub>) and the cavity field <em>c</em> (blue, propagating along the ring cavity <em>C</em><sub>2</sub>). The two parts of the hybrid system are not in direct interaction with each other, but coupled to the atom–cavity reservoir. The reservoir consists of the field reservoirs <em>b</em><sub>1, 2</sub> (propagating along the two cascaded cavities <em>C</em><sub>1, 2</sub>) and the atomic reservoirs <em>N</em><sub>1, 2</sub> (placed respectively at the two intersections of the cavities <em>C</em> and <em>C</em><sub>2</sub>).</p> <p><strong>Abstract</strong></p> <p>We show that it is possible to use an atom–cavity reservoir to prepare the two-mode squeezed and entangled states of a hybrid system of an atomic ensemble and an optical field, which do not directly interact with each other. The essential mechanism is based on the combined effect of a two-mode squeezing interaction and a beam–splitter interaction between the system and the reservoir. The reservoir mechanism is important for quantum networking in that it allows an interface between a localized matter-based memory and an optical carrier of quantum information without direct interaction.</p
Double Λ loop of four interlinked parametric interactions
<p><strong>Figure 4.</strong> Double Λ loop of four interlinked parametric interactions. Each of the field reservoirs <em>b</em><sub>1, 2</sub> interacts with the noninteracting parts (<em>a</em>, <em>c</em>) of the hybrid system in the Λ configuration, one wing of which is the two-mode squeezing interaction (double solid line with double-ended arrows) and the other is the beam–splitter interaction (dashed line with a single-ended arrow). The two different kinds of interactions interlink alternately.</p> <p><strong>Abstract</strong></p> <p>We show that it is possible to use an atom–cavity reservoir to prepare the two-mode squeezed and entangled states of a hybrid system of an atomic ensemble and an optical field, which do not directly interact with each other. The essential mechanism is based on the combined effect of a two-mode squeezing interaction and a beam–splitter interaction between the system and the reservoir. The reservoir mechanism is important for quantum networking in that it allows an interface between a localized matter-based memory and an optical carrier of quantum information without direct interaction.</p
Image_2_Long-term trajectories of BMI and cumulative incident metabolic syndrome: A cohort study.png
BackgroundBody mass index (BMI) has been widely recognized as a risk factor for metabolic syndrome (MetS). However, the relationship between the trajectory of BMI and cumulative incident MetS is still unclear. We investigate the associations of long-term measurements of BMI with MetS among young adults in the China Health and Nutrition Survey.MethodsWe enrolled individuals aged 10 to 20 at baseline with recorded BMI at each follow-up interview, and 554 participants were finally included in our study. The assessment and incidence of MetS were evaluated by blood tests and physical examinations in their adulthood. A latent class growth mixed model was used to identify three BMI trajectory patterns: a low baseline BMI with slow development (low-slow, n=438), a low baseline BMI with fast development (low-fast, n=66), and a high baseline BMI with fast development (high-fast, n=50). Logistic regression was used to explore the relationship between different BMI trajectories and the incidence of MetS.ResultDuring a follow-up of 16 years, 61 (11.01%) participants developed MetS. The combination of elevated triglycerides and reduced high-density lipoprotein cholesterol was most frequent in diagnosed MetS. In multivariate adjusted models, the low-fast and high-fast BMI trajectories showed a significantly higher risk of MetS than those with the low-slow BMI trajectory (low-high: OR = 3.40, 95% CI: 1.14-10.13, P ConclusionOur study identified three BMI trajectories in young adults and found that long-term measurements of BMI were also associated with cumulative incident MetS.</p
Image_1_Long-term trajectories of BMI and cumulative incident metabolic syndrome: A cohort study.png
BackgroundBody mass index (BMI) has been widely recognized as a risk factor for metabolic syndrome (MetS). However, the relationship between the trajectory of BMI and cumulative incident MetS is still unclear. We investigate the associations of long-term measurements of BMI with MetS among young adults in the China Health and Nutrition Survey.MethodsWe enrolled individuals aged 10 to 20 at baseline with recorded BMI at each follow-up interview, and 554 participants were finally included in our study. The assessment and incidence of MetS were evaluated by blood tests and physical examinations in their adulthood. A latent class growth mixed model was used to identify three BMI trajectory patterns: a low baseline BMI with slow development (low-slow, n=438), a low baseline BMI with fast development (low-fast, n=66), and a high baseline BMI with fast development (high-fast, n=50). Logistic regression was used to explore the relationship between different BMI trajectories and the incidence of MetS.ResultDuring a follow-up of 16 years, 61 (11.01%) participants developed MetS. The combination of elevated triglycerides and reduced high-density lipoprotein cholesterol was most frequent in diagnosed MetS. In multivariate adjusted models, the low-fast and high-fast BMI trajectories showed a significantly higher risk of MetS than those with the low-slow BMI trajectory (low-high: OR = 3.40, 95% CI: 1.14-10.13, P ConclusionOur study identified three BMI trajectories in young adults and found that long-term measurements of BMI were also associated with cumulative incident MetS.</p
Table_1_Long-term trajectories of BMI and cumulative incident metabolic syndrome: A cohort study.docx
BackgroundBody mass index (BMI) has been widely recognized as a risk factor for metabolic syndrome (MetS). However, the relationship between the trajectory of BMI and cumulative incident MetS is still unclear. We investigate the associations of long-term measurements of BMI with MetS among young adults in the China Health and Nutrition Survey.MethodsWe enrolled individuals aged 10 to 20 at baseline with recorded BMI at each follow-up interview, and 554 participants were finally included in our study. The assessment and incidence of MetS were evaluated by blood tests and physical examinations in their adulthood. A latent class growth mixed model was used to identify three BMI trajectory patterns: a low baseline BMI with slow development (low-slow, n=438), a low baseline BMI with fast development (low-fast, n=66), and a high baseline BMI with fast development (high-fast, n=50). Logistic regression was used to explore the relationship between different BMI trajectories and the incidence of MetS.ResultDuring a follow-up of 16 years, 61 (11.01%) participants developed MetS. The combination of elevated triglycerides and reduced high-density lipoprotein cholesterol was most frequent in diagnosed MetS. In multivariate adjusted models, the low-fast and high-fast BMI trajectories showed a significantly higher risk of MetS than those with the low-slow BMI trajectory (low-high: OR = 3.40, 95% CI: 1.14-10.13, P ConclusionOur study identified three BMI trajectories in young adults and found that long-term measurements of BMI were also associated with cumulative incident MetS.</p
Additional file 1 of The role of lifestyle in the association between long-term ambient air pollution exposure and cardiovascular disease: a national cohort study in China
Additional file 1: Method S1. Ambient air pollution exposure acquisition. Figure S1. Sampling procedure. Figure S2. Study flowchart. Figure S3. The association of different lifestyle factors. Figure S4. (a) The proportion of single ideal factor in different lifestyle groups. (b) The proportion of ideal factors in different lifestyle groups. Figure S5. Directed acyclic graph. Figure S6. The marginal effect of lifestyle on CVD and in the relationship between ambient air pollutant exposure and CVD. Table S1. The score criteria of different lifestyle factors. Table S2. The exposure level of different air pollutants among the study population. Table S3. The exposure level by quintile of air pollutant. Table S4. The HRs (95% CIs) of the associations between lifestyle and CVD with and without adjustment for ambient air pollutant exposure. Table S5. Joint effects of lifestyle and air pollutant exposure on the incidence of CVD. Table S6. The HRs (95% CIs) of incident CVD associated with each lifestyle factor at different levels of air pollutant exposure. Table S7. Subgroup analysis of the additive interactions analysis of the effect of dichotomized lifestyle on the association between ambient air pollutant exposure and CVD in high air pollutant exposure levels (Q2–Q5). Table S8. The HRs (95% CIs) of associations between air pollutant exposure (per 10 μg/m3 increase) and incident CVD, and the mediation effect of lifestyle categories on air pollution and CVD in different sensitivity analysis models. Table S9. The HRs (95% CIs) of the association between ambient air pollutant exposure (per 10 μg/m3 increase) and CVD in different lifestyle categories in different sensitivity analysis models. Table S10. Multiplicative and additive interaction analysis of the effect of dichotomized lifestyle on the association between time-varying ambient air pollutant exposure and CVD. Table S11. Multiplicative and additive interaction analysis of the effect of dichotomized lifestyle on the association between 3 years of ambient air pollutant exposure and CVD. Table S12. Multiplicative and additive interaction analysis of the effect of dichotomized lifestyle considering new categories and nighttime sleep duration on the association between ambient air pollutant exposure and CVD. Table S13. Multiplicative and additive interaction analysis of the effect of dichotomized lifestyle considering new assignment of lifestyle categories on the association between ambient air pollutant exposure and CVD. Table S14. The subdistribution HRs (sHRs, 95% CI) of the associations between ambient air pollutant exposure (per 10 μg/m3) and CVD in different lifestyle categories. Table S15. Baseline characteristics of included and excluded participants. Table S16. Baseline characteristics of included participants and those without lifestyle scores