19 research outputs found

    Table2_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.DOC

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    Image5_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.JPEG

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    Table1_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.DOC

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    Image1_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.TIF

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    DataSheet_1_Lineage Divergence of Dendrolimus punctatus in Southern China Based on Mitochondrial Genome.docx

    No full text
    In southern China, the masson pine caterpillar, Dendrolimus punctatus, has caused serious damage to the Pinus massoniana (Lamb.) pine forests. Here, the whole mitochondrial DNA (mtDNA) was employed to analyze the population evolution of D. punctatus and to understand the process underlying its current phylogenetic pattern. D. punctatus populations within its distribution range in China were categorized into five subgroups: central and eastern China (CEC), southwestern China (SWC), Yibin in Sichuan (SC), Baise in Guangxi (GX), and Luoding in Guangdong (GD), with a high level of haplotype diversity and nucleotide diversity among them. The genetic distances between subgroups are relatively large; however, the genetic distances between populations within the CEC subgroup were relatively small, suggesting that many populations were closely related in this subgroup. The mantel test showed that geographic distance had an important impact on the genetic distance of different geographic populations (r = 0.3633, P < 0.001). The neutrality tests, Bayesian skyline plot, and haplotype network showed that D. punctatus experienced a population expansion around 100,000 years ago. The divergence times of GX/SC, SWC, GD, and CEC were 0.347, 0.236, 0.200, and 0.110 million years ago, respectively. The SWC, CEC, and GD subgroups might have evolved from GX or SC subgroups. The population genetic structure of D. punctatus was closely related to its host tree species, geographic distance among populations, the weak flight capacity, and many eco-environment conditions.</p

    Image3_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.JPEG

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    Image4_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.JPEG

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    Image2_Five Visual and Olfactory Target Genes for RNAi in Agrilus Planipennis.TIF

    No full text
    RNA interference (RNAi) is a widely used technique for gene function researches and recently pest controls. It had been applied in emerald ash borer (EAB Agrilus planipennis) larvae and adults, and achieved significant interference effects, whether by ingesting or microinjecting. Feeding in the phloem and cambial regions, the larvae of A. planipennis are difficult to be controlled by conventional insecticides, so adult stage is the critical stage for EAB control. However, the target genes of adult stage of A. planipennis need to be further screened. Here, we preliminarily screened five potential target genes of vision and olfaction for RNAi in A. planipennis. Three odorant binding proteins (OBPs) and three opsins, which expressed significantly different between newly emerged and sexually mature EABs (OBP5, OBP7, OBP10, LW opsin 1 and UV opsin 2) or highly in sexually mature male EAB (UV opsin 3), were selected as targets to design primers for gene silencing. After dsRNA injection, the gene expression levels were determined by real-time quantitative PCR. We found that the expression levels of five genes were significantly down-regulated, during the 4 days after dsRNA injection. Among these genes, the expression of LW opsin 1 was down-regulated the most, causing a reduction of 99.1% compared with the control treated with EGFP dsRNA, followed by UV opsin 3 (97.4%), UV opsin 2 (97.0%), OBP7 (96.2%), and OBP10 (88.7%). This study provides a basis for further RNAi-based new controlling method development of A. planipennis at adult stage.</p

    Table_1_Lineage Divergence of Dendrolimus punctatus in Southern China Based on Mitochondrial Genome.docx

    No full text
    In southern China, the masson pine caterpillar, Dendrolimus punctatus, has caused serious damage to the Pinus massoniana (Lamb.) pine forests. Here, the whole mitochondrial DNA (mtDNA) was employed to analyze the population evolution of D. punctatus and to understand the process underlying its current phylogenetic pattern. D. punctatus populations within its distribution range in China were categorized into five subgroups: central and eastern China (CEC), southwestern China (SWC), Yibin in Sichuan (SC), Baise in Guangxi (GX), and Luoding in Guangdong (GD), with a high level of haplotype diversity and nucleotide diversity among them. The genetic distances between subgroups are relatively large; however, the genetic distances between populations within the CEC subgroup were relatively small, suggesting that many populations were closely related in this subgroup. The mantel test showed that geographic distance had an important impact on the genetic distance of different geographic populations (r = 0.3633, P < 0.001). The neutrality tests, Bayesian skyline plot, and haplotype network showed that D. punctatus experienced a population expansion around 100,000 years ago. The divergence times of GX/SC, SWC, GD, and CEC were 0.347, 0.236, 0.200, and 0.110 million years ago, respectively. The SWC, CEC, and GD subgroups might have evolved from GX or SC subgroups. The population genetic structure of D. punctatus was closely related to its host tree species, geographic distance among populations, the weak flight capacity, and many eco-environment conditions.</p

    Table_2_Performance of two Ips bark beetles and their associated pathogenic fungi on hosts reflects a species-specific association in the beetle-fungus complex.xlsx

    No full text
    When Ips bark beetles invade and colonize the host plants, their associated pathogenic fungal partners are carried into the phloem of the host trees. Host trees are lethally attacked by the beetle-fungus complex and the collective damage severely limits forestry production worldwide. It is of great importance to verify whether bark beetles and their associated fungi show concordant performance in terms of biology, physiology, and biochemistry on host trees. In this study, the two Ips bark beetles Ips typographus and Ips subelongatus (Coleoptera: Curculionidae, Scolytinae), their respective associated pathogenic fungi Endoconidiophora polonica and Endoconidiophora fujiensis, and their respective host plants Picea jezoensis and Larix olgensis were selected as test material. Cross-inoculation experiments were conducted indoors and outdoors to investigate the differences in reproduction and development of two beetles and infectivity of two fungi on two plants, as well as the differences in physiological responses of two plants to two fungal infections. The results showed that I. typographus and E. polonica had excellent host performance on P. jezoensis; however, neither successfully colonized and infected L. olgensis. In contrast, I. subelongatus and E. fujiensis showed strong host suitability on L. olgensis and some degree of suitability on P. jezoensis, although the host suitability of P. jezoensis for E. polonica was significantly higher than that for E. fujiensis. In addition, we found that the absolute amount of ergosterol accumulated on the lesion was positively correlated with lesion area. The ergosterol amount and lesion area were both strongly correlated with the release of host monoterpenes, but had no obvious correlation with the concentration of fungi-induced phenols on the lesion area and the side-chain oxidation of lignin in the xylem of the infected sites. Based on these results, we confirmed that “I. typographus-E. polonica” and “I. subelongatus-E. fujiensis” complexes both showed the most suitable consistent performances on their own traditional hosts, establishing a stable species-specific association relationship in these two beetle-fungus complexes, with the “I. subelongatus-E. fujiensis” complex showing broader host suitability. From the perspective of physiological responses of plants to fungal infections, monoterpenes are an important indicator of host suitability.</p
    corecore