3,521 research outputs found

    A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems

    Get PDF
    In this paper, two efficient iterative algorithms based on the simpler GMRES method are proposed for solving shifted linear systems. To make full use of the shifted structure, the proposed algorithms utilizing the deflated restarting strategy and flexible preconditioning can significantly reduce the number of matrix-vector products and the elapsed CPU time. Numerical experiments are reported to illustrate the performance and effectiveness of the proposed algorithms.Comment: 17 pages. 9 Tables, 1 figure; Newly update: add some new numerical results and correct some typos and syntax error

    Diffusion in higher dimensional SYK model with complex fermions

    Full text link
    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential \mu. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.Comment: 15 pages, 1 figure, add 4 references and fix some typos in this versio

    Transport Coefficients for Holographic Hydrodynamics at Finite Energy Scale

    Get PDF
    We investigate the relations between black hole thermodynamics and holographic transport coefficients in this paper. The formulae for DC conductivity and diffusion coefficient are verified for electrically single-charged black holes. We examine the correctness of the proposed expressions by taking charged dilatonic and single-charged STU black holes as two concrete examples, and compute the flows of conductivity and diffusion coefficient by solving the linear order perturbation equations. We then check the consistence by evaluating the Brown-York tensor at a finite radial position. Finally, we find that the retarded Green functions for the shear modes can be expressed easily in terms of black hole thermodynamic quantities and transport coefficients.Comment: 33 pages,4 figures,to appear in Advances in High Energy Physic

    Van der Waals-like phase transition from holographic entanglement entropy in Lorentz breaking massive gravity

    Get PDF
    In this paper, phase transition of AdS black holes in lorentz breaking massive gravity has been studied in the framework of holography. We find that there is a first order phase transition(FPT) and second order phase transition(SPT) both in Bekenstein-Hawking entropy(BHE)-temperature plane and holographic entanglement entropy(HEE)-temperature plane. Furthermore, for the FPT, the equal area law is checked and for the SPT, the critical exponent of the heat capacity is also computed. Our results confirm that the phase structure of HEE is similar to that of BHE in lorentz breaking massive gravity, which implies that HEE and BHE have some potential underlying relationship.Comment: 10 pages, 10 figure

    Magnetothermoelectric DC conductivities from holography models with hyperscaling factor in Lifshitz spacetime

    Full text link
    We investigate an Einstein-Maxwell-Dilaton-Axion holographic model and obtain two branches of a charged black hole solution with a dynamic exponent and a hyperscaling violation factor when a magnetic field presents. The magnetothermoelectric DC conductivities are then calculated in terms of horizon data by means of holographic principle. We find that linear temperature dependence resistivity and quadratic temperature dependence inverse Hall angle can be achieved in our model. The well-known anomalous temperature scaling of the Nernst signal and the Seebeck coefficient of cuprate strange metals are also discussed.Comment: 1+23 pages, 4 figures, references adde
    corecore