5,236 research outputs found

    Directed Cyclic Graph for Causal Discovery from Multivariate Functional Data

    Full text link
    Discovering causal relationship using multivariate functional data has received a significant amount of attention very recently. In this article, we introduce a functional linear structural equation model for causal structure learning when the underlying graph involving the multivariate functions may have cycles. To enhance interpretability, our model involves a low-dimensional causal embedded space such that all the relevant causal information in the multivariate functional data is preserved in this lower-dimensional subspace. We prove that the proposed model is causally identifiable under standard assumptions that are often made in the causal discovery literature. To carry out inference of our model, we develop a fully Bayesian framework with suitable prior specifications and uncertainty quantification through posterior summaries. We illustrate the superior performance of our method over existing methods in terms of causal graph estimation through extensive simulation studies. We also demonstrate the proposed method using a brain EEG dataset.Comment: 36 pages, 2 figures, 7 table

    Automatic estimation of flux distributions of astrophysical source populations

    Full text link
    In astrophysics a common goal is to infer the flux distribution of populations of scientifically interesting objects such as pulsars or supernovae. In practice, inference for the flux distribution is often conducted using the cumulative distribution of the number of sources detected at a given sensitivity. The resulting "log(N>S)\log(N>S)-log(S)\log (S)" relationship can be used to compare and evaluate theoretical models for source populations and their evolution. Under restrictive assumptions the relationship should be linear. In practice, however, when simple theoretical models fail, it is common for astrophysicists to use prespecified piecewise linear models. This paper proposes a methodology for estimating both the number and locations of "breakpoints" in astrophysical source populations that extends beyond existing work in this field. An important component of the proposed methodology is a new interwoven EM algorithm that computes parameter estimates. It is shown that in simple settings such estimates are asymptotically consistent despite the complex nature of the parameter space. Through simulation studies it is demonstrated that the proposed methodology is capable of accurately detecting structural breaks in a variety of parameter configurations. This paper concludes with an application of our methodology to the Chandra Deep Field North (CDFN) data set.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS750 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore