1,243 research outputs found

    Teen smoking, field cancerization, and a "critical period" hypothesis for lung cancer susceptibility.

    Get PDF
    Cigarette smoking by children and adolescents continues to be prevalent, and this fact represents a major public health problem and challenge. Epidemiologic work has previously suggested that exposure of the lung to tobacco carcinogens at an early age may be an independent risk factor for lung cancer. Recent studies at the molecular and cellular levels are consistent with this, now suggesting that early exposure enhances DNA damage and is associated with the induction of DNA alterations in specific chromosomal regions. In this paper we hypothesize that adolescence, which is known to be the period of greatest development for the lung, may constitute a "critical period" in which tobacco carcinogens can induce fields of genetic alterations that make the early smoker more susceptible to the damaging effects of continued smoking. The fact that lung development differs by sex might also contribute to apparent gender differences in lung cancer susceptibility. Because this hypothesis has important implications for health policy and tobacco control, additional resources need to be devoted to its further evaluation. Targeted intervention in adolescent smoking may yield even greater reductions in lung cancer occurrence than otherwise anticipated

    Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project

    Get PDF
    We have developed an atmospheric monitoring system for the Telescope Array experiment at Akeno Observatory. It consists of a Nd:YAG laser with an alt-azimuth shooting system and a small light receiver. This system is installed inside an air conditioned weather-proof dome. All parts, including the dome, laser, shooter, receiver, and optical devices are fully controlled by a personal computer utilizing the Linux operating system. It is now operated as a back-scattering LIDAR System. For the Telescope Array experiment, to estimate energy reliably and to obtain the correct shower development profile, the light transmittance in the atmosphere needs to be calibrated with high accuracy. Based on observational results using this monitoring system, we consider this LIDAR to be a very powerful technique for Telescope Array experiments. The details of this system and its atmospheric monitoring technique will be discussed.Comment: 24 pages, 13 figures(plus 3 gif files), Published in NIM-A Vol.488, August 200

    Indications of repair of radon-induced chromosome damage in human lymphocytes: an adaptive response induced by low doses of X-rays.

    Get PDF
    Naturally occurring radon is a relatively ubiquitous environmental carcinogen to which large numbers of people can be exposed over their lifetimes. The accumulation of radon in homes, therefore, has led to a large program to determine the effects of the densely ionizing alpha particles that are produced when radon decays. In human lymphocytes, low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of clastogens. This has been attributed to the induction of a repair mechanism by the low-dose exposures. Historically, chromosome aberrations induced by radon have been considered to be relatively irreparable. The present experiments, however, show that if human peripheral blood lymphocytes are irradiated with low doses of X-rays (2 cGy) at 48 hr of culture, before being exposed to radon at 72 hr of culture, the yield of chromatid deletions induced by radon is decreased by a factor of two. Furthermore, the numbers of aberrations per cell do not follow a Poisson distribution but are overdispersed, as might be expected because high-linear energy transfer (high LET) alpha particles have a high relative biological effectiveness compared to low-LET radiations such as X-rays or gamma rays. Pretreatment with a low dose of X-rays decreases the overdispersion and leads to a greater proportion of the cells having no aberrations, or lower numbers of aberrations, than is the case in cells exposed to radon alone.(ABSTRACT TRUNCATED AT 250 WORDS

    Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology

    Full text link
    This paper is an extended account of my "Introductory Plenary talk at Knots in Hellas 2016" conference We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators, here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and expanded. Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer, part of the series Proceedings in Mathematics & Statistics (PROMS