6,928 research outputs found
The Federal Information Security Management Act of 2002: A Potemkin Village
Due to the daunting possibilities of cyberwarfare, and the ease with which cyberattacks may be conducted, the United Nations has warned that the next world war could be initiated through worldwide cyberattacks between countries. In response to the growing threat of cyberwarfare and the increasing importance of information security, Congress passed the Federal Information Security Management Act of 2002 (FISMA). FISMA recognizes the importance of information security to the national economic and security interests of the United States. However, this Note argues that FISMA has failed to significantly bolster information security, primarily because FISMA treats information security as a technological problem and not an economic problem. This Note analyzes existing proposals to incentivize heightened software quality assurance, and proposes a new solution designed to strengthen federal information security in light of the failings of FISMA and the trappings of Congress’s 2001 amendment to the Computer Fraud and Abuse Act
A New Generating Function for Calculating the Igusa Local Zeta Function
A new method is devised for calculating the Igusa local zeta function
of a polynomial over a -adic field. This involves a new
kind of generating function that is the projective limit of a family of
generating functions, and contains more data than . This resides in
an algebra whose structure is naturally compatible with operations on the
underlying polynomials, facilitating calculation of local zeta functions. This
new technique is used to expand significantly the set of quadratic polynomials
whose local zeta functions have been calculated explicitly. Local zeta
functions for arbitrary quadratic polynomials over -adic fields with odd
are presented, as well as for polynomials over unramified -adic fields of
the form where is a quadratic form and is a linear form where
and have disjoint variables. For a quadratic form over an arbitrary
-adic field with odd , this new technique makes clear precisely which of
the three candidate poles are actual poles.Comment: 54 page
Particle Astrophysics and Cosmology: Cosmic Laboratories for New Physics (Summary of the Snowmass 2001 P4 Working Group)
The past few years have seen dramatic breakthroughs and spectacular and
puzzling discoveries in astrophysics and cosmology. In many cases, the new
observations can only be explained with the introduction of new fundamental
physics. Here we summarize some of these recent advances. We then describe
several problem in astrophysics and cosmology, ripe for major advances, whose
resolution will likely require new physics.Comment: 27 pages, 14 figure
Short-Term Memory in Orthogonal Neural Networks
We study the ability of linear recurrent networks obeying discrete time
dynamics to store long temporal sequences that are retrievable from the
instantaneous state of the network. We calculate this temporal memory capacity
for both distributed shift register and random orthogonal connectivity
matrices. We show that the memory capacity of these networks scales with system
size.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts
We consider the effects of inhomogeneous reionization on the distribution of
galaxies at high redshifts. Modulation of the formation process of the ionizing
sources by large scale density modes makes reionization inhomogeneous and
introduces a spread to the reionization times of different regions with the
same size. After sources photo-ionize and heat these regions to a temperature
\ga 10^4K at different times, their temperatures evolve as the ionized
intergalactic medium (IGM) expands. The varying IGM temperature makes the
minimum mass of galaxies spatially non-uniform with a fluctuation amplitude
that increases towards small scales. These scale-dependent fluctuations modify
the shape of the power spectrum of low-mass galaxies at high redshifts in a way
that depends on the history of reionization. The resulting distortion of the
primordial power spectrum is significantly larger than changes associated with
uncertainties in the inflationary parameters, such as the spectral index of the
scalar power spectrum or the running of the spectral index. Future surveys of
high-redshift galaxies will offer a new probe of the thermal history of the IGM
but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap
Fibrous-Ceramic/Aerogel Composite Insulating Tiles
Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at normal atmospheric pressure is not much greater than that of the fibrous ceramic alone in a vacuum
The Physical Parameters of the Retired A Star HD185351
We report here an analysis of the physical stellar parameters of the giant
star HD185351 using Kepler short-cadence photometry, optical and near infrared
interferometry from CHARA, and high-resolution spectroscopy. Asteroseismic
oscillations detected in the Kepler short-cadence photometry combined with an
effective temperature calculated from the interferometric angular diameter and
bolometric flux yield a mean density, rho_star = 0.0130 +- 0.0003 rho_sun and
surface gravity, logg = 3.280 +- 0.011. Combining the gravity and density we
find Rstar = 5.35 +- 0.20 Rsun and Mstar = 1.99 +- 0.23 Msun. The trigonometric
parallax and CHARA angular diameter give a radius Rstar = 4.97 +- 0.07 Rsun.
This smaller radius,when combined with the mean stellar density, corresponds to
a stellar mass Mstar = 1.60 +- 0.08 Msun, which is smaller than the
asteroseismic mass by 1.6-sigma. We find that a larger mass is supported by the
observation of mixed modes in our high-precision photometry, the spacing of
which is consistent only for Mstar =~ 1.8 Msun. Our various and independent
mass measurements can be compared to the mass measured from interpolating the
spectroscopic parameters onto stellar evolution models, which yields a
model-based mass M_star = 1.87 +- 0.07 Msun. This mass agrees well with the
asteroseismic value,but is 2.6-sigma higher than the mass from the combination
of asteroseismology and interferometry. The discrepancy motivates future
studies with a larger sample of giant stars. However, all of our mass
measurements are consistent with HD185351 having a mass in excess of 1.5 Msun.Comment: ApJ accepte
- …