26 research outputs found
Supply chain structure under different scenarios.
The battery driving mileage on a single charge and convenience of the charging stations affect Electric Vehicle’s (EV) demand. This paper studies the optimal number of charging stations and EV’s price strategy considering different component commonality configurations. Assume the EV manufacturer provides two types of EV and the two EVs have the same battery configuration (battery as a common part) or the same naked vehicle–EV without batteries (naked vehicle as a common part). And the common part could be configured with low or high quality. We discuss four scenarios with different common parts and different quality levels. For each scenario, we present the optimal number of the charging stations and EV prices. Then we compare the optimal solutions and manufacturer’s profits in above four scenarios with numerical simulation and give some managerial insights. Our analysis reveals that (1) consumers’ range anxiety towards battery will affect manufacturer’s product configuration strategy, EVs’ prices and demands. (2) large consumers’ sensitivity towards charging station will corresponding to more charging station, high EV prices and demands. If consumers are very concerned about the charging convenience, high-end electric vehicles need to be launched first, then as customers’ anxiety about charging decreases, the low quality EV could be developed and diffused. (3) the unit product cost reduction caused by the commonality may increase or decrease the EVs’ prices, which depends on the relationship between the demand increment incurred by one more charging station and the cost coefficient of building the charging station. (4) The low quality naked vehicle as common component will increase both the number of the charging stations and the demand and the manufacturer is more likely to obtain high profits. (5) the cost saving coefficient of battery common parts has greater influence on the selection of commonality. When consumers’ range anxiety towards battery is very high, manufacturers should choose low-quality naked vehicles or high-quality battery as common components.</div
New Insights into Black Carbon Nanoparticle-Induced Dispersibility of Goethite Colloids and Configuration-Dependent Sorption for Phenanthrene
Black carbon nanoparticles (nano-BC)
are one of the most active
components in pyrogenic carbonaceous matter and involved in many biogeochemical
processes. This study investigated heteroaggregation of nano-BC with
goethite (a model of natural mineral colloids) and the configuration
effect of heteroaggregates on phenanthrene (PHE) sorption. Nano-BC
could significantly enhance the dispersion of goethite via heteroaggregation
when its concentration was higher than the critical concentration
(Cc). The Cc was dependent on the surface potential of nano-BC, which was directly
measured for the first time in this study. Configuration and stability
of the heteroaggregates were regulated by BC-goethite mass ratio and
solution pH. At pH 5.3, oppositely charged goethite and nano-BC interacted
with each other through electrostatic attraction and the configuration
of heteroaggregates was dependent on BC-goethite mass ratio. At pH
7.4, where both goethite and nano-BC were negatively charged, they
heteroaggregated with each other mainly through H-bonding and Lewis
acid–base mechanisms, and the configuration of heteroaggregates
was independent of BC-goethite mass ratio. For PHE sorption, small-sized
heteroaggregates were more favorable than large ones due to the higher
content of active sorption sites. Interestingly, at a higher concentration
of PHE, we found that the solute molecules could probably penetrate
into and/or alter the configuration of heteroaggregates and enhance
its sorption capacity for PHE. These findings are useful for understanding
the effect of nano-BC on colloidal stability and organic compound
sorption of minerals
Partion of the <i>c</i> − <i>c</i>′. as .
The battery driving mileage on a single charge and convenience of the charging stations affect Electric Vehicle’s (EV) demand. This paper studies the optimal number of charging stations and EV’s price strategy considering different component commonality configurations. Assume the EV manufacturer provides two types of EV and the two EVs have the same battery configuration (battery as a common part) or the same naked vehicle–EV without batteries (naked vehicle as a common part). And the common part could be configured with low or high quality. We discuss four scenarios with different common parts and different quality levels. For each scenario, we present the optimal number of the charging stations and EV prices. Then we compare the optimal solutions and manufacturer’s profits in above four scenarios with numerical simulation and give some managerial insights. Our analysis reveals that (1) consumers’ range anxiety towards battery will affect manufacturer’s product configuration strategy, EVs’ prices and demands. (2) large consumers’ sensitivity towards charging station will corresponding to more charging station, high EV prices and demands. If consumers are very concerned about the charging convenience, high-end electric vehicles need to be launched first, then as customers’ anxiety about charging decreases, the low quality EV could be developed and diffused. (3) the unit product cost reduction caused by the commonality may increase or decrease the EVs’ prices, which depends on the relationship between the demand increment incurred by one more charging station and the cost coefficient of building the charging station. (4) The low quality naked vehicle as common component will increase both the number of the charging stations and the demand and the manufacturer is more likely to obtain high profits. (5) the cost saving coefficient of battery common parts has greater influence on the selection of commonality. When consumers’ range anxiety towards battery is very high, manufacturers should choose low-quality naked vehicles or high-quality battery as common components.</div
Partion of the <i>c</i> − <i>c</i>′ as <i>θ</i> = 1200.
The battery driving mileage on a single charge and convenience of the charging stations affect Electric Vehicle’s (EV) demand. This paper studies the optimal number of charging stations and EV’s price strategy considering different component commonality configurations. Assume the EV manufacturer provides two types of EV and the two EVs have the same battery configuration (battery as a common part) or the same naked vehicle–EV without batteries (naked vehicle as a common part). And the common part could be configured with low or high quality. We discuss four scenarios with different common parts and different quality levels. For each scenario, we present the optimal number of the charging stations and EV prices. Then we compare the optimal solutions and manufacturer’s profits in above four scenarios with numerical simulation and give some managerial insights. Our analysis reveals that (1) consumers’ range anxiety towards battery will affect manufacturer’s product configuration strategy, EVs’ prices and demands. (2) large consumers’ sensitivity towards charging station will corresponding to more charging station, high EV prices and demands. If consumers are very concerned about the charging convenience, high-end electric vehicles need to be launched first, then as customers’ anxiety about charging decreases, the low quality EV could be developed and diffused. (3) the unit product cost reduction caused by the commonality may increase or decrease the EVs’ prices, which depends on the relationship between the demand increment incurred by one more charging station and the cost coefficient of building the charging station. (4) The low quality naked vehicle as common component will increase both the number of the charging stations and the demand and the manufacturer is more likely to obtain high profits. (5) the cost saving coefficient of battery common parts has greater influence on the selection of commonality. When consumers’ range anxiety towards battery is very high, manufacturers should choose low-quality naked vehicles or high-quality battery as common components.</div
Optimal battery common components selection under <i>c</i><sub>2</sub> = 1500.
Optimal battery common components selection under c2 = 1500.</p
Partion of the <i>c</i> − <i>c</i>′ as <i>θ</i> = 2200.
The battery driving mileage on a single charge and convenience of the charging stations affect Electric Vehicle’s (EV) demand. This paper studies the optimal number of charging stations and EV’s price strategy considering different component commonality configurations. Assume the EV manufacturer provides two types of EV and the two EVs have the same battery configuration (battery as a common part) or the same naked vehicle–EV without batteries (naked vehicle as a common part). And the common part could be configured with low or high quality. We discuss four scenarios with different common parts and different quality levels. For each scenario, we present the optimal number of the charging stations and EV prices. Then we compare the optimal solutions and manufacturer’s profits in above four scenarios with numerical simulation and give some managerial insights. Our analysis reveals that (1) consumers’ range anxiety towards battery will affect manufacturer’s product configuration strategy, EVs’ prices and demands. (2) large consumers’ sensitivity towards charging station will corresponding to more charging station, high EV prices and demands. If consumers are very concerned about the charging convenience, high-end electric vehicles need to be launched first, then as customers’ anxiety about charging decreases, the low quality EV could be developed and diffused. (3) the unit product cost reduction caused by the commonality may increase or decrease the EVs’ prices, which depends on the relationship between the demand increment incurred by one more charging station and the cost coefficient of building the charging station. (4) The low quality naked vehicle as common component will increase both the number of the charging stations and the demand and the manufacturer is more likely to obtain high profits. (5) the cost saving coefficient of battery common parts has greater influence on the selection of commonality. When consumers’ range anxiety towards battery is very high, manufacturers should choose low-quality naked vehicles or high-quality battery as common components.</div
Optimal naked vehicle common components selection under <i>c</i><sub>1</sub> = 1300.
Optimal naked vehicle common components selection under c1 = 1300.</p
Optimal naked vehicle common components selection under <i>c</i><sub>1</sub> = 1000.
Optimal naked vehicle common components selection under c1 = 1000.</p
Model parameters and decision variables.
The battery driving mileage on a single charge and convenience of the charging stations affect Electric Vehicle’s (EV) demand. This paper studies the optimal number of charging stations and EV’s price strategy considering different component commonality configurations. Assume the EV manufacturer provides two types of EV and the two EVs have the same battery configuration (battery as a common part) or the same naked vehicle–EV without batteries (naked vehicle as a common part). And the common part could be configured with low or high quality. We discuss four scenarios with different common parts and different quality levels. For each scenario, we present the optimal number of the charging stations and EV prices. Then we compare the optimal solutions and manufacturer’s profits in above four scenarios with numerical simulation and give some managerial insights. Our analysis reveals that (1) consumers’ range anxiety towards battery will affect manufacturer’s product configuration strategy, EVs’ prices and demands. (2) large consumers’ sensitivity towards charging station will corresponding to more charging station, high EV prices and demands. If consumers are very concerned about the charging convenience, high-end electric vehicles need to be launched first, then as customers’ anxiety about charging decreases, the low quality EV could be developed and diffused. (3) the unit product cost reduction caused by the commonality may increase or decrease the EVs’ prices, which depends on the relationship between the demand increment incurred by one more charging station and the cost coefficient of building the charging station. (4) The low quality naked vehicle as common component will increase both the number of the charging stations and the demand and the manufacturer is more likely to obtain high profits. (5) the cost saving coefficient of battery common parts has greater influence on the selection of commonality. When consumers’ range anxiety towards battery is very high, manufacturers should choose low-quality naked vehicles or high-quality battery as common components.</div
Optimal battery common components selection under <i>c</i><sub>2</sub> = 2000.
Optimal battery common components selection under c2 = 2000.</p
