2,262 research outputs found

    Dissipation in Compressible MHD Turbulence

    Full text link
    We report results of a three dimensional, high resolution (up to 512^3) numerical investigation of supersonic compressible magnetohydrodynamic turbulence. We consider both forced and decaying turbulence. The model parameters are appropriate to conditions found in Galactic molecular clouds. We find that the dissipation time of turbulence is of order the flow crossing time or smaller, even in the presence of strong magnetic fields. About half the dissipation occurs in shocks. Weak magnetic fields are amplified and tangled by the turbulence, while strong fields remain well ordered.Comment: 5 pages, 3 Postscript figures, LaTeX, accepted by Ap.J.Let

    Deducing topology of protein-protein interaction networks from experimentally measured sub-networks.

    Get PDF
    BackgroundProtein-protein interaction networks are commonly sampled using yeast two hybrid approaches. However, whether topological information reaped from these experimentally-measured sub-networks can be extrapolated to complete protein-protein interaction networks is unclear.ResultsBy analyzing various experimental protein-protein interaction datasets, we found that they are not random samples of the parent networks. Based on the experimental bait-prey behaviors, our computer simulations show that these non-random sampling features may affect the topological information. We tested the hypothesis that a core sub-network exists within the experimentally sampled network that better maintains the topological characteristics of the parent protein-protein interaction network. We developed a method to filter the experimentally sampled network to result in a core sub-network that more accurately reflects the topology of the parent network. These findings have fundamental implications for large-scale protein interaction studies and for our understanding of the behavior of cellular networks.ConclusionThe topological information from experimental measured networks network as is may not be the correct source for topological information about the parent protein-protein interaction network. We define a core sub-network that more accurately reflects the topology of the parent network

    Ca Channel Distribution in T-Tubules and Ca Alternans in Cardiac Myocytes

    Get PDF

    Molecular Basis for Kir6.2 Channel Inhibition by Adenine Nucleotides

    Get PDF
    AbstractKATP channels are comprised of a pore-forming protein, Kir6.x, and the sulfonylurea receptor, SURx. Interaction of adenine nucleotides with Kir6.2 positively charged amino acids such as K185 and R201 on the C-terminus causes channel closure. Substitution of these amino acids with other positively charged residues had small effects on inhibition by adenine nucleotide, while substitution with neutral or negative residues had major effects, suggesting electrostatic interactions between Kir6.2 positive charges and adenine nucleotide negative phosphate groups. Furthermore, R201 mutation decreased channel sensitivity to ATP, ADP, and AMP to a similar extent, but K185 mutation decreased primarily ATP and ADP sensitivity, leaving the AMP sensitivity relatively unaffected. Thus, channel inhibition by ATP may involve interaction of the α-phosphate with R201 and interaction of the β-phosphate with K185. In addition, decreased open probability due to rundown or sulfonylureas caused an increase in ATP sensitivity in the K185 mutant, but not in the R201 mutant. Thus, the β-phosphate may bind in a state-independent fashion to K185 to destabilize channel openings, while R201 interacts with the α-phosphate to stabilize a channel closed configuration. Substitution of R192 on the C-terminus and R50 on the N-terminus with different charged residues also affected ATP sensitivity. Based on these results a structural scheme is proposed, which includes features of other recently published models

    The Electrocardiogram – Waves and Intervals

    Get PDF

    Spermine Block of the Strong Inward Rectifier Potassium Channel Kir2.1: Dual Roles of Surface Charge Screening and Pore Block

    Get PDF
    Inward rectification in strong inward rectifiers such as Kir2.1 is attributed to voltage-dependent block by intracellular polyamines and Mg2+. Block by the polyamine spermine has a complex voltage dependence with shallow and steep components and complex concentration dependence. To understand the mechanism, we measured macroscopic Kir2.1 currents in excised inside-out giant patches from Xenopus oocytes expressing Kir2.1, and single channel currents in the inside-out patches from COS7 cells transfected with Kir2.1. We found that as spermine concentration or voltage increased, the shallow voltage-dependent component of spermine block at more negative voltages was caused by progressive reduction in the single channel current amplitude, without a decrease in open probability. We attributed this effect to spermine screening negative surface charges involving E224 and E299 near the inner vestibule of the channel, thereby reducing K ion permeation rate. This idea was further supported by experiments in which increasing ionic strength also decreased Kir2.1 single channel amplitude, and by mutagenesis experiments showing that this component of spermine block decreased when E224 and E299, but not D172, were neutralized. The steep voltage-dependent component of block at more depolarized voltages was attributed to spermine migrating deeper into the pore and causing fast open channel block. A quantitative model incorporating both features showed excellent agreement with the steady-state and kinetic data. In addition, this model accounts for previously described substate behavior induced by a variety of Kir2.1 channel blockers