10 research outputs found

    Meta-Lens Doublet in the Visible Region

    No full text
    Recently, developments in meta-surfaces have allowed for the possibility of a fundamental shift in lens manufacturingfrom the century-old grinding technology to nanofabricationopening a way toward mass producible high-end meta-lenses. Inspired by early camera lenses and to overcome the aberrations of planar single-layered meta-lenses, we demonstrate a compact meta-lens doublet by patterning two metasurfaces on both sides of a substrate. This meta-lens doublet has a numerical aperture of 0.44, a focal length of 342.5 μm, and a field of view of 50° that enables diffraction-limited monochromatic imaging along the focal plane at a wavelength of 532 nm. The compact design has various imaging applications in microscopy, machine vision, and computer vision

    Aluminum Plasmonic Multicolor Meta-Hologram

    No full text
    We report a phase-modulated multicolor meta-hologram (MCMH) that is polarization-dependent and capable of producing images in three primary colors. The MCMH structure is made of aluminum nanorods that are arranged in a two-dimensional array of pixels with surface plasmon resonances in red, green, and blue. The aluminum nanorod array is patterned on a 30 nm thick SiO<sub>2</sub> spacer layer sputtered on top of a 130 nm thick aluminum mirror. With proper design of the structure, we obtain resonances of narrow bandwidths to allow for implementation of the multicolor scheme. Taking into account of the wavelength dependence of the diffraction angle, we can project images to specific locations with predetermined size and order. With tuning of aluminum nanorod size, we demonstrate that the image color can be continuously varied across the visible spectrum

    Versatile Polarization Generation with an Aluminum Plasmonic Metasurface

    No full text
    All forms of light manipulation rely on light–matter interaction, the primary mechanism of which is the modulation of its electromagnetic fields by the localized electromagnetic fields of atoms. One of the important factors that influence the strength of interaction is the polarization of the electromagnetic field. The generation and manipulation of light polarization have been traditionally accomplished with bulky optical components such as waveplates, polarizers, and polarization beam splitters that are optically thick. The miniaturization of these devices is highly desirable for the development of a new class of compact, flat, and broadband optical components that can be integrated together on a single photonics chip. Here we demonstrate, for the first time, a reflective metasurface polarization generator (MPG) capable of producing light beams of any polarizations all from a linearly polarized light source with a single optically thin chip. Six polarization light beams are achieved simultaneously including four linear polarizations along different directions and two circular polarizations, all conveniently separated into different reflection angles. With the Pancharatnam–Berry phase-modulation method, the MPG sample was fabricated with aluminum as the plasmonic metal instead of the conventional gold or silver, which allowed for its broadband operation covering the entire visible spectrum. The versatility and compactness of the MPG capable of transforming any incident wave into light beams of arbitrary polarizations over a broad spectral range are an important step forward in achieving a complete set of flat optics for integrated photonics with far-reaching applications

    Single-Layer Metasurface with Controllable Multiwavelength Functions

    No full text
    In this paper, we report dispersion-engineered metasurfaces with distinct functionalities controlled by wavelength. Unlike previous approaches based on spatial multiplexing or vertical stacking of metasurfaces, we utilize a single phase profile with wavelength dependence encoded in the phase shifters’ dispersion. We designed and fabricated a multiwavelength achromatic metalens (MAM) with achromatic focusing for blue (B), green (G), yellow (Y), and red (R) light and two wavelength-controlled beam generators (WCBG): one focuses light with orbital angular momentum (OAM) states (<i>l</i> = 0,1,2) corresponding to three primary colors; the other produces ordinary focal spots (<i>l</i> = 0) for red and green light, while generating a vortex beam (<i>l</i> = 1) in the blue. A full color (RGB) hologram is also demonstrated in simulation. Our approach opens a path to applications ranging from near-eye displays and holography to compact multiwavelength beam generation

    High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces

    No full text
    We combine theory and experiment to demonstrate that a carefully designed gradient meta-surface supports high-efficiency anomalous reflections for near-infrared light following the generalized Snell’s law, and the reflected wave becomes a bounded surface wave as the incident angle exceeds a critical value. Compared to previously fabricated gradient meta-surfaces in infrared regime, our samples work in a shorter wavelength regime with a broad bandwidth (750–900 nm), exhibit a much higher conversion efficiency (∼80%) to the anomalous reflection mode at normal incidence, and keep light polarization unchanged after the anomalous reflection. Finite-difference-time-domain (FDTD) simulations are in excellent agreement with experiments. Our findings may lead to many interesting applications, such as antireflection coating, polarization and spectral beam splitters, high-efficiency light absorbers, and surface plasmon couplers

    Toward Omnidirectional Light Absorption by Plasmonic Effect for High-Efficiency Flexible Nonvacuum Cu(In,Ga)Se<sub>2</sub> Thin Film Solar Cells

    No full text
    We have successfully demonstrated a great advantage of plasmonic Au nanoparticles for efficient enhancement of Cu(In,Ga)Se<sub>2</sub>(CIGS) flexible photovoltaic devices. The incorporation of Au NPs can eliminate obstacles in the way of developing ink-printing CIGS flexible thin film photovoltaics (TFPV), such as poor absorption at wavelengths in the high intensity region of solar spectrum, and that occurs significantly at large incident angle of solar irradiation. The enhancement of external quantum efficiency and photocurrent have been systematically analyzed <i>via</i> the calculated electromagnetic field distribution. Finally, the major benefits of the localized surface plasmon resonances (LSPR) in visible wavelength have been investigated by ultrabroadband pump–probe spectroscopy, providing a solid evidence on the strong absorption and reduction of surface recombination that increases electron–hole generation and improves the carrier transportation in the vicinity of <i>pn</i>-juction

    High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images

    No full text
    Holograms, the optical devices to reconstruct predesigned images, show many applications in our daily life. However, applications of hologram are still limited by the constituent materials and therefore their working range is trapped at a particular electromagnetic region. In recent years, the metasurfaces, an array of subwavelength antenna with varying sizes, show the abilities to manipulate the phase of incident electromagnetic wave from visible to microwave frequencies. Here, we present a reflective-type and high-efficiency meta-hologram fabricated by metasurface for visible wavelength. Using gold cross nanoantennas as building blocks to construct our meta-hologram devices with thickness ∼ λ/4, the reconstructed images of meta-hologram show polarization-controlled dual images with high contrast, functioning for both coherent and incoherent light sources within a broad spectral range and under a wide range of incidence angles. The flexibility demonstrated here for our meta-hologram paves the road to a wide range of applications related to holographic images at arbitrary electromagnetic wave region

    High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images

    No full text
    Holograms, the optical devices to reconstruct predesigned images, show many applications in our daily life. However, applications of hologram are still limited by the constituent materials and therefore their working range is trapped at a particular electromagnetic region. In recent years, the metasurfaces, an array of subwavelength antenna with varying sizes, show the abilities to manipulate the phase of incident electromagnetic wave from visible to microwave frequencies. Here, we present a reflective-type and high-efficiency meta-hologram fabricated by metasurface for visible wavelength. Using gold cross nanoantennas as building blocks to construct our meta-hologram devices with thickness ∼ λ/4, the reconstructed images of meta-hologram show polarization-controlled dual images with high contrast, functioning for both coherent and incoherent light sources within a broad spectral range and under a wide range of incidence angles. The flexibility demonstrated here for our meta-hologram paves the road to a wide range of applications related to holographic images at arbitrary electromagnetic wave region
    corecore