67 research outputs found

    Table_1_Identification of Potential Key circRNAs in Aged Mice With Postoperative Delirium.XLSX

    No full text
    Postoperative delirium (POD) is a common postoperative complication in elderly patients and seriously affects postoperative recovery. The exact mechanism of POD is still unclear. Therefore, it is necessary to explore the mechanism of POD in transcriptional regulation. At present, circRNAs have been proven to play an important role in a variety of mental health and cognitive disorders, such as Alzheimer’s disease, depression and schizophrenia. To reveal the effect of circRNA on POD, we used microarray to analyze the differential expression profiles of circRNAs in the hippocampus of 12-month-old mice between the tibial fracture and control groups. A total of 1,4236 circRNAs were identified. Compared with the control group, there were 500 circRNAs with increased expression and 187 with decreased expression. The accuracy of the microarray data was further verified by qRT–PCR. Finally, GO enrichment and KEGG pathway analyses indicated that changes in axon orientation, ubiquitin-mediated proteolysis, glutamate synapses, the estrogen signaling pathway, the RAS signaling pathway and other systems may be important potential pathological mechanisms in the progression of POD. In particular, we found that the HOMER1 gene and its transcript mmu_circRNA_26701 are specifically expressed in the glutamate synapse, which may provide new clues and intervention targets for the progression of this refractory disease.</p

    Table_2_Identification of Potential Key circRNAs in Aged Mice With Postoperative Delirium.XLS

    No full text
    Postoperative delirium (POD) is a common postoperative complication in elderly patients and seriously affects postoperative recovery. The exact mechanism of POD is still unclear. Therefore, it is necessary to explore the mechanism of POD in transcriptional regulation. At present, circRNAs have been proven to play an important role in a variety of mental health and cognitive disorders, such as Alzheimer’s disease, depression and schizophrenia. To reveal the effect of circRNA on POD, we used microarray to analyze the differential expression profiles of circRNAs in the hippocampus of 12-month-old mice between the tibial fracture and control groups. A total of 1,4236 circRNAs were identified. Compared with the control group, there were 500 circRNAs with increased expression and 187 with decreased expression. The accuracy of the microarray data was further verified by qRT–PCR. Finally, GO enrichment and KEGG pathway analyses indicated that changes in axon orientation, ubiquitin-mediated proteolysis, glutamate synapses, the estrogen signaling pathway, the RAS signaling pathway and other systems may be important potential pathological mechanisms in the progression of POD. In particular, we found that the HOMER1 gene and its transcript mmu_circRNA_26701 are specifically expressed in the glutamate synapse, which may provide new clues and intervention targets for the progression of this refractory disease.</p

    Twenty Natural Amino Acids Identification by a Photochromic Sensor Chip

    No full text
    All 20 natural amino acids identification shows crucial importance in biochemistry and clinical application while it is still a challenge due to highly similarity in molecular configuration of the amino acids. Low efficiency, complicated sensing molecules and environment hindered the successful identification. Here, we developed a facile sensor chip composed of one photochromic molecule with metal ions spotted to form spirooxazine-metallic complexes, and successfully recognized all the 20 natural amino acids as well as their mixtures. The sensor chip gives distinct fluorescent fingerprint pattern of each amino acid, based on multistate of spirooxazine under different light stimulations and discriminated interaction between various metal ions and amino acids. The sensor chip demonstrates powerful capability of amino acids identification, which promotes sensing of biomolecules

    Promoting Effect of Nitride as Support for Pd Hydrodechlorination Catalyst

    No full text
    Pd-catalyzed reductive decontamination is considerably promising in the safe handling of various pollutants, and previous studies on heterogeneous Pd catalysts have demonstrated the key role of support in determining their catalysis performance. In this work, metal nitrides were studied as supports for Pd as a hydrodechlorination (HDC) catalyst. Density functional theory study showed that a transition metal nitride (TMN) support could effectively modulate the valence-band state of Pd. The upward shift of the d-band center reduced the energy barrier for water desorption from the Pd site to accommodate H2/4-chlorophenol and increased the total energy released during HDC. The theoretical results were experimentally verified by synthesizing Pd catalysts onto different metal oxides and the corresponding nitrides. All studied TMNs, including TiN, Mo2N, and CoN, showed satisfactorily stabilized Pd and render Pd with high dispersity. In line with theoretical prediction, TiN most effectively modulated the electronic states of the Pd sites and enhanced their HDC performance, with mass activity much higher than those of counterpart catalysts on other supports. The combined theoretical and experimental results shows that TMNs, especially TiN, are new and potentially important support for the highly efficient Pd HDC catalysts

    Dynamic Monitoring of the Structural Evolution of Au@Pd under Electrochemistry

    No full text
    Core–shell nanocatalysts have shown superior catalytic activity than monometallic catalysts. However, these metastable materials are susceptible to structural changes during catalysis. Comprehending the evolution of surface sites and their stability under different reaction conditions is crucial for designing durable and highly active core–shell nanocatalysts. Herein, structural transformation of the atomic layer thickness of Pd shells on Au nanocubes in different electrolytes at various electrochemical windows was investigated by a combination of cyclic voltammetry (CV), surface-enhanced Raman spectroscopy (SERS) of adsorbed probe molecules, and elemental analysis. Pd sites are stable under basic and neutral conditions but experience severe structure evolution under acidic conditions. Pd atoms that are directly coordinated by Au atoms, upon oxidation at evaluated potential, transform into Pd ions via the reaction with H+ which would also be adsorbed on the Au sites. These Pd ions are easily coreduced with the formed Au ions into surface alloys in the backward CV scan. In contrast, Pd atoms in the thick Pd overlayer (>1 monolayer) are likely to dissolute into the electrolyte solution and leach. SERS revealed that the change of Pd sites primarily occurred at contiguous Pd sites and isolated Pd sites were relatively stable. This evolution mechanism provides new insight into the rational design of efficient and stable catalysts and is expected to promote further application of core–shell nanocatalysts

    NJ dendrogram of relationships among blunt snout bream populations based on Nei's unbiased genetic distance.

    No full text
    <p>Percent bootstrap support values for 10,000 replications are indicated at nodes. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108967#pone-0108967-t001" target="_blank">Table 1</a> for population abbreviation definitions.</p

    AMOVA analysis of genetic variation in five populations of blunt snout bream based on SRAP markers.

    No full text
    <p>Note:</p><p>***Significant at <i>α</i> = 0.001 level.</p><p>AMOVA analysis of genetic variation in five populations of blunt snout bream based on SRAP markers.</p
    • …
    corecore