85 research outputs found

    On the likelihood of future eruptions in the Chilean Southern Volcanic Zone: interpreting the past century's eruption record based on statistical analyses

    Get PDF
    A sequence of 150 explosive eruptions recorded during the past century at the Chilean Southern Volcanic Zone (SVZ) is subjected to statistical time series analysis. The exponential, Weibull, and log-logistic distribution functions are fit to the eruption record, separately for literature-assigned volcanic explosivity indices (VEI) ≥2 and VEI ≥3. Since statistical tests confirm the adequacy of all the fits to describe the data, all models are used to estimate the likelihood of future eruptions. Only small differences are observed between the different distribution functions with regard to the eruption forecast, whereby the log-logistic distribution predicts the lowest probabilities. There is a 50% probability for VEI ≥2 eruptions to occur in the SVZ within less than a year, and 90% probability to occur within the next 2-3 years. For the larger VEI ≥3 eruptions, the 50% probability is reached in 3-4 years, while the 90% level is reached in 9-11 year

    The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption

    Get PDF
    Highly-explosive plinian eruptions belong to the most devastating phenomena of volcanic activity. Upper Apoyeque Tephra (UAq), erupted in close vicinity of the Managua city region in west-central Nicaragua with two million inhabitants, was formed by a rhyodacitic plinian eruption at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate to delimit the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lithic clasts in San Isidro Tephra together form a trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque Volcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ~24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicate rapid magma ascent to the shallower reservoir at ~5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ~830°C. Water concentrations ranged at ~5.5 wt. % as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered through injection of a hotter, more primitive melt into a water-supersaturated reservoir

    Seismic evidence of a link between subducted oceanic faults and volcanism: A case study from South Central Chile

    Get PDF
    The south-central Chilean subduction zone was investigated at 39-40°S by a passive seismic experiment. The investigation area comprises the maximum slip of the great 1960 Mw 9.5 Valdivia earthquake. The incoming Nazca plate is permeated by a number of major fault zones including the Valdivia fault zone and the Mocha fault zone which seem to have behaved as a barriers for the rupture propagation of large earthquakes in the past. The investigated sector is also home to the Villarrica volcano - one of South America’s most active volcanoes. In the extension of the Valdiva fault zone we observed a cluster of increased seismicity in the subducting plate at depths between 80 km and 120 km, where dehydration of the subducting plate occurs. The focal plane solutions of this cluster show predominantly strike-slip motion. Tomographic images show decreased P- and S-velocity and increased ratio between the seismic cluster and the volcanic center of Villarrica, Quetrupillán and Lanin, corresponding to an increased content of fluids or melt. Additional geochemical investigations show that the magma of Villarrica volcano has an enhanced fluid signal compared to the other volcanoes of the Southern Volcanic Zone of Chile. It can be assumed that the Valdivia fault zone serves as the source for the fluids. Before the plate subducts, water can penetrate the plate through faults within the Valdivia fault zone. Serpentinization would build the water into minerals. Inside the subduction zone the Valdiva fault zone is reactivated by dehydration reactions at a depth of about 100 km. The released fluids rise towards the volcanic center causing the tomographic anomalies. At the end this leads to an increased degree of melting and a higher activity of Villarrica volcano

    On the fluid-mobility of molybdenum, tungsten, and antimony in subduction systems

    Get PDF
    Molybdenum (Mo) and tungsten (W) have long been regarded as being more or less immobile during slab fluid-induced arc magma generation. Here we characterize about 180 samples of young, predominantly mafic to intermediate tephras and lavas for their Mo, W, and antimony (Sb) concentrations, to examine the fluid-mobility of these elements in subduction systems. Samples were taken along the active arcs of the Chilean Southern Volcanic Zone (SVZ) and the Central American Volcanic Arc (CAVA). When relating Mo, W, and Sb to trace element ratios typically used to constrain the involvement of subduction fluids in magma formation, such as Ba/La or U/Th, Mo, W, and Sb are enriched in the most fluid-influenced, highest-degree melts. W/Mo ratios correlate positively with Pb/Ce, which is established to reflect a recent subduction signal or assimilation of crustal material with an ancient subduction signature, suggesting that subduction processes promote enrichment of W over Mo. This is well expressed at the SVZ and most of the CAVA; while few OIB-type rocks from Central Costa Rica form an opposite trend. Moreover, Mo/W ratios co-vary with Cl contents derived from melt inclusions, indicating that the relative degree of mobilization responds to the composition of the subduction fluid. To evaluate the mobility of Mo, W, and Sb during metamorphism in the slab, eclogites with no or minor metasomatic overprint and a fluid-induced overprint in an eclogite-blueschist sequence were investigated. None of the three elements shows a systematic variability related to metasomatism and the minor variations are interpreted to reflect protolith heterogeneity. This suggests that Mo, W and Sb remain relatively immobile up to depths of 70 km in the subduction zone

    Along- and Across-Arc Variations in the Southern Volcanic Zone, Chile

    Get PDF
    Within Collaborative Research Center (SFB574), we are studying the changes in the chemistry of olivinebearing volcanic rocks along the volcanic front of the Southern Volcanic Zone (SVZ) in Chile and in the rear and backarc in Argentina. Samples from the volcanic front (VF) have typical trace element signatures of subduction zone volcanic rocks, characterized, for example, by negative Nb and Ta anomalies and positive Pb, Sr, Cs, Rb, Ba, Th and U anomalies on incompatible element (spider) diagrams. Samples from Longavi in the forearc are distinct in having lower abundances of the HREE's, high Sr/Y and geochemical signatures characteristic of adakitic rocks believed to be derived through melting of the subducting slab. The northern Southern Volcanic Zone (NSVZ) samples from Tupungatito and San José have the most enriched highly to moderately incompatible element ratios, high Rb/Ba and low La/Ta and Ba/La, suggesting involvement of lower crust in the petrogenesis of these rocks. We observe systematic variations in Sr and Nd isotopic compositions along the arc, with Sr isotopes showing a dramatic increase and Nd isotopes showing a dramatic decrease in the NSVZ, which is where the crust begins to thicken significantly. The increase in Sr and decrease in Nd in the VF is coupled with an increase in the degree of differentiation of the Tupungatito and San José (SiO2 > 58%, MgO = 2-4%) volcanoes. On the Pb isotope diagrams, the VF rocks trend from MORB-like compositions to the field for pelagic sediments, consistent with involvement of subducted sediments in generating the VF rocks. Interestingly, samples from the NSVZ form the lower end of the VF array (have the least radiogenic Pb isotopic compositions) on the uranogenic Pb isotope diagram, but extend to the left of the rest of the VF array on the thorogenic Pb isotope diagram, showing evidence of at least a second enriched component. The presence of the second enriched component could reflect assimilation of lower crust or addition of lower crust through subduction erosion into the manlte wedge. Quaternary backarc samples in Argentina also show subduction signatures in their incompatible elements but generally show lower fluid signatures than the VF samples. Although the Pb isotopic compositions of backarc rocks are similar to MORB, the low Nd isotopic compositions indicate the presence of enriched material within the backarc. Although no systematic variation is seen in Sr and Nd isotopic composition from north to souths, the Pb isotope ratios show systematic spatial variations with the northern samples having the most enriched Pb isotope ratios. The lower fluid signatures in the backarc volcanoes, coupled with less radiogenic Pb isotopic compositions are consistent with a decreasing influence of the subduction signature into the backarc. With the addition of Hf and O isotope data we should be able to better constrain the different reservoirs involved in generating the diverse geochemical compositions of the SVZ volcanic rocks
    • …
    corecore