75,802 research outputs found

    How Are They Racialized? Racial Experiences of Chinese Graduate Students

    Get PDF
    The present study explores the lived experiences of Chinese graduate students at a Southwestern University in order to find out how they experience race in daily life, what their interpretations of the racial experience are and how do racialized experiences shape their perceptions of life chances. The results indicate that the racialization process plays an important role in Chinese students\u27 life through their lived experiences. Most Chinese students have noticed race and some of them have experienced racial discrimination. However, Chinese students still hold up the importance of education and believe that education will blunt the racial edg

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte

    Capacity and Random-Coding Exponents for Channel Coding with Side Information

    Full text link
    Capacity formulas and random-coding exponents are derived for a generalized family of Gel'fand-Pinsker coding problems. These exponents yield asymptotic upper bounds on the achievable log probability of error. In our model, information is to be reliably transmitted through a noisy channel with finite input and output alphabets and random state sequence, and the channel is selected by a hypothetical adversary. Partial information about the state sequence is available to the encoder, adversary, and decoder. The design of the transmitter is subject to a cost constraint. Two families of channels are considered: 1) compound discrete memoryless channels (CDMC), and 2) channels with arbitrary memory, subject to an additive cost constraint, or more generally to a hard constraint on the conditional type of the channel output given the input. Both problems are closely connected. The random-coding exponent is achieved using a stacked binning scheme and a maximum penalized mutual information decoder, which may be thought of as an empirical generalized Maximum a Posteriori decoder. For channels with arbitrary memory, the random-coding exponents are larger than their CDMC counterparts. Applications of this study include watermarking, data hiding, communication in presence of partially known interferers, and problems such as broadcast channels, all of which involve the fundamental idea of binning.Comment: to appear in IEEE Transactions on Information Theory, without Appendices G and