310 research outputs found

    MambaOut: Do We Really Need Mamba for Vision?

    Full text link
    Mamba, an architecture with RNN-like token mixer of state space model (SSM), was recently introduced to address the quadratic complexity of the attention mechanism and subsequently applied to vision tasks. Nevertheless, the performance of Mamba for vision is often underwhelming when compared with convolutional and attention-based models. In this paper, we delve into the essence of Mamba, and conceptually conclude that Mamba is ideally suited for tasks with long-sequence and autoregressive characteristics. For vision tasks, as image classification does not align with either characteristic, we hypothesize that Mamba is not necessary for this task; Detection and segmentation tasks are also not autoregressive, yet they adhere to the long-sequence characteristic, so we believe it is still worthwhile to explore Mamba's potential for these tasks. To empirically verify our hypotheses, we construct a series of models named MambaOut through stacking Mamba blocks while removing their core token mixer, SSM. Experimental results strongly support our hypotheses. Specifically, our MambaOut model surpasses all visual Mamba models on ImageNet image classification, indicating that Mamba is indeed unnecessary for this task. As for detection and segmentation, MambaOut cannot match the performance of state-of-the-art visual Mamba models, demonstrating the potential of Mamba for long-sequence visual tasks. The code is available at https://github.com/yuweihao/MambaOutComment: Code: https://github.com/yuweihao/MambaOu

    Generator Born from Classifier

    Full text link
    In this paper, we make a bold attempt toward an ambitious task: given a pre-trained classifier, we aim to reconstruct an image generator, without relying on any data samples. From a black-box perspective, this challenge seems intractable, since it inevitably involves identifying the inverse function for a classifier, which is, by nature, an information extraction process. As such, we resort to leveraging the knowledge encapsulated within the parameters of the neural network. Grounded on the theory of Maximum-Margin Bias of gradient descent, we propose a novel learning paradigm, in which the generator is trained to ensure that the convergence conditions of the network parameters are satisfied over the generated distribution of the samples. Empirical validation from various image generation tasks substantiates the efficacy of our strategy

    Diffusion Model as Representation Learner

    Full text link
    Diffusion Probabilistic Models (DPMs) have recently demonstrated impressive results on various generative tasks.Despite its promises, the learned representations of pre-trained DPMs, however, have not been fully understood. In this paper, we conduct an in-depth investigation of the representation power of DPMs, and propose a novel knowledge transfer method that leverages the knowledge acquired by generative DPMs for recognition tasks. Our study begins by examining the feature space of DPMs, revealing that DPMs are inherently denoising autoencoders that balance the representation learning with regularizing model capacity. To this end, we introduce a novel knowledge transfer paradigm named RepFusion. Our paradigm extracts representations at different time steps from off-the-shelf DPMs and dynamically employs them as supervision for student networks, in which the optimal time is determined through reinforcement learning. We evaluate our approach on several image classification, semantic segmentation, and landmark detection benchmarks, and demonstrate that it outperforms state-of-the-art methods. Our results uncover the potential of DPMs as a powerful tool for representation learning and provide insights into the usefulness of generative models beyond sample generation. The code is available at \url{https://github.com/Adamdad/Repfusion}.Comment: Accepted by ICCV 202

    Globally Optimal Cell Tracking using Integer Programming

    Get PDF
    We propose a novel approach to automatically tracking cell populations in time-lapse images. To account for cell occlusions and overlaps, we introduce a robust method that generates an over-complete set of competing detection hypotheses. We then perform detection and tracking simultaneously on these hypotheses by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.Comment: Engin T\"uretken and Xinchao Wang contributed equally to this wor

    C-Procgen: Empowering Procgen with Controllable Contexts

    Full text link
    We present C-Procgen, an enhanced suite of environments on top of the Procgen benchmark. C-Procgen provides access to over 200 unique game contexts across 16 games. It allows for detailed configuration of environments, ranging from game mechanics to agent attributes. This makes the procedural generation process, previously a black-box in Procgen, more transparent and adaptable for various research needs.The upgrade enhances dynamic context management and individualized assignments, while maintaining computational efficiency. C-Procgen's controllable contexts make it applicable in diverse reinforcement learning research areas, such as learning dynamics analysis, curriculum learning, and transfer learning. We believe that C-Procgen will fill a gap in the current literature and offer a valuable toolkit for future works

    Streptamer technology allows to isolate leukemia antigen-specific CD8+ T cells

    Get PDF
    In this work we investigated whether streptamer technology could purify WT1-specific CD8+ T cells, what is important for the development of adoptive immunotherapy. Sample from HLA/A2+ HDs were identified and selected by streptamer. The function of selected CD8+ T cells was identified by the staining of phenotypic markers. The results showed that streptamer permits the detection and selection of WT1-specific CD8+ T cells in the PBMCs from HDs. The naïve function of selected CD8+ T cells was preserved and most selected CD8+ T cells demonstrated an effector T cell immunophenotype
    corecore