1,492 research outputs found

    A Distributed Tracking Algorithm for Reconstruction of Graph Signals

    Full text link
    The rapid development of signal processing on graphs provides a new perspective for processing large-scale data associated with irregular domains. In many practical applications, it is necessary to handle massive data sets through complex networks, in which most nodes have limited computing power. Designing efficient distributed algorithms is critical for this task. This paper focuses on the distributed reconstruction of a time-varying bandlimited graph signal based on observations sampled at a subset of selected nodes. A distributed least square reconstruction (DLSR) algorithm is proposed to recover the unknown signal iteratively, by allowing neighboring nodes to communicate with one another and make fast updates. DLSR uses a decay scheme to annihilate the out-of-band energy occurring in the reconstruction process, which is inevitably caused by the transmission delay in distributed systems. Proof of convergence and error bounds for DLSR are provided in this paper, suggesting that the algorithm is able to track time-varying graph signals and perfectly reconstruct time-invariant signals. The DLSR algorithm is numerically experimented with synthetic data and real-world sensor network data, which verifies its ability in tracking slowly time-varying graph signals.Comment: 30 pages, 9 figures, 2 tables, journal pape

    Proof of Convergence and Performance Analysis for Sparse Recovery via Zero-point Attracting Projection

    Full text link
    A recursive algorithm named Zero-point Attracting Projection (ZAP) is proposed recently for sparse signal reconstruction. Compared with the reference algorithms, ZAP demonstrates rather good performance in recovery precision and robustness. However, any theoretical analysis about the mentioned algorithm, even a proof on its convergence, is not available. In this work, a strict proof on the convergence of ZAP is provided and the condition of convergence is put forward. Based on the theoretical analysis, it is further proved that ZAP is non-biased and can approach the sparse solution to any extent, with the proper choice of step-size. Furthermore, the case of inaccurate measurements in noisy scenario is also discussed. It is proved that disturbance power linearly reduces the recovery precision, which is predictable but not preventable. The reconstruction deviation of pp-compressible signal is also provided. Finally, numerical simulations are performed to verify the theoretical analysis.Comment: 29 pages, 6 figure

    Local-set-based Graph Signal Reconstruction

    Full text link
    Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip

    Local Measurement and Reconstruction for Noisy Graph Signals

    Full text link
    The emerging field of signal processing on graph plays a more and more important role in processing signals and information related to networks. Existing works have shown that under certain conditions a smooth graph signal can be uniquely reconstructed from its decimation, i.e., data associated with a subset of vertices. However, in some potential applications (e.g., sensor networks with clustering structure), the obtained data may be a combination of signals associated with several vertices, rather than the decimation. In this paper, we propose a new concept of local measurement, which is a generalization of decimation. Using the local measurements, a local-set-based method named iterative local measurement reconstruction (ILMR) is proposed to reconstruct bandlimited graph signals. It is proved that ILMR can reconstruct the original signal perfectly under certain conditions. The performance of ILMR against noise is theoretically analyzed. The optimal choice of local weights and a greedy algorithm of local set partition are given in the sense of minimizing the expected reconstruction error. Compared with decimation, the proposed local measurement sampling and reconstruction scheme is more robust in noise existing scenarios.Comment: 24 pages, 6 figures, 2 tables, journal manuscrip
    • …
    corecore