1,492 research outputs found
A Distributed Tracking Algorithm for Reconstruction of Graph Signals
The rapid development of signal processing on graphs provides a new
perspective for processing large-scale data associated with irregular domains.
In many practical applications, it is necessary to handle massive data sets
through complex networks, in which most nodes have limited computing power.
Designing efficient distributed algorithms is critical for this task. This
paper focuses on the distributed reconstruction of a time-varying bandlimited
graph signal based on observations sampled at a subset of selected nodes. A
distributed least square reconstruction (DLSR) algorithm is proposed to recover
the unknown signal iteratively, by allowing neighboring nodes to communicate
with one another and make fast updates. DLSR uses a decay scheme to annihilate
the out-of-band energy occurring in the reconstruction process, which is
inevitably caused by the transmission delay in distributed systems. Proof of
convergence and error bounds for DLSR are provided in this paper, suggesting
that the algorithm is able to track time-varying graph signals and perfectly
reconstruct time-invariant signals. The DLSR algorithm is numerically
experimented with synthetic data and real-world sensor network data, which
verifies its ability in tracking slowly time-varying graph signals.Comment: 30 pages, 9 figures, 2 tables, journal pape
Proof of Convergence and Performance Analysis for Sparse Recovery via Zero-point Attracting Projection
A recursive algorithm named Zero-point Attracting Projection (ZAP) is
proposed recently for sparse signal reconstruction. Compared with the reference
algorithms, ZAP demonstrates rather good performance in recovery precision and
robustness. However, any theoretical analysis about the mentioned algorithm,
even a proof on its convergence, is not available. In this work, a strict proof
on the convergence of ZAP is provided and the condition of convergence is put
forward. Based on the theoretical analysis, it is further proved that ZAP is
non-biased and can approach the sparse solution to any extent, with the proper
choice of step-size. Furthermore, the case of inaccurate measurements in noisy
scenario is also discussed. It is proved that disturbance power linearly
reduces the recovery precision, which is predictable but not preventable. The
reconstruction deviation of -compressible signal is also provided. Finally,
numerical simulations are performed to verify the theoretical analysis.Comment: 29 pages, 6 figure
Local-set-based Graph Signal Reconstruction
Signal processing on graph is attracting more and more attentions. For a
graph signal in the low-frequency subspace, the missing data associated with
unsampled vertices can be reconstructed through the sampled data by exploiting
the smoothness of the graph signal. In this paper, the concept of local set is
introduced and two local-set-based iterative methods are proposed to
reconstruct bandlimited graph signal from sampled data. In each iteration, one
of the proposed methods reweights the sampled residuals for different vertices,
while the other propagates the sampled residuals in their respective local
sets. These algorithms are built on frame theory and the concept of local sets,
based on which several frames and contraction operators are proposed. We then
prove that the reconstruction methods converge to the original signal under
certain conditions and demonstrate the new methods lead to a significantly
faster convergence compared with the baseline method. Furthermore, the
correspondence between graph signal sampling and time-domain irregular sampling
is analyzed comprehensively, which may be helpful to future works on graph
signals. Computer simulations are conducted. The experimental results
demonstrate the effectiveness of the reconstruction methods in various sampling
geometries, imprecise priori knowledge of cutoff frequency, and noisy
scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip
Local Measurement and Reconstruction for Noisy Graph Signals
The emerging field of signal processing on graph plays a more and more
important role in processing signals and information related to networks.
Existing works have shown that under certain conditions a smooth graph signal
can be uniquely reconstructed from its decimation, i.e., data associated with a
subset of vertices. However, in some potential applications (e.g., sensor
networks with clustering structure), the obtained data may be a combination of
signals associated with several vertices, rather than the decimation. In this
paper, we propose a new concept of local measurement, which is a generalization
of decimation. Using the local measurements, a local-set-based method named
iterative local measurement reconstruction (ILMR) is proposed to reconstruct
bandlimited graph signals. It is proved that ILMR can reconstruct the original
signal perfectly under certain conditions. The performance of ILMR against
noise is theoretically analyzed. The optimal choice of local weights and a
greedy algorithm of local set partition are given in the sense of minimizing
the expected reconstruction error. Compared with decimation, the proposed local
measurement sampling and reconstruction scheme is more robust in noise existing
scenarios.Comment: 24 pages, 6 figures, 2 tables, journal manuscrip
- …