148 research outputs found

    Framework for female entrepreneurship in China

    Get PDF
    Entrepreneurial activity by women in the China has become more active in recent years with much greater attention being paid within and outside of China. Academic research has sought to describe current conditions and future trends; however, there has been little systematic research done in this area. The aim of this paper is to provide a clear picture of the general background and characteristics of Chinese female entrepreneurship based on Eastern cultural features. In addition, an entrepreneurial conceptual model about mainland Chinese women\u27s entrepreneurial activity is presented and a case study is used for illustration

    Basonuclin Regulates a Subset of Ribosomal RNA Genes in HaCaT Cells

    Get PDF
    Basonuclin (Bnc1), a cell-type-specific ribosomal RNA (rRNA) gene regulator, is expressed mainly in keratinocytes of stratified epithelium and gametogenic cells of testis and ovary. Previously, basonuclin was shown in vitro to interact with rRNA gene (rDNA) promoter at three highly conserved sites. Basonuclin's high affinity binding site overlaps with the binding site of a dedicated and ubiquitous Pol I transcription regulator, UBF, suggesting that their binding might interfere with each other if they bind to the same promoter. Knocking-down basonuclin in mouse oocytes eliminated approximately one quarter of RNA polymerase I (Pol I) transcription foci, without affecting the BrU incorporation of the remaining ones, suggesting that basonuclin might regulate a subset of rDNA. Here we show, via chromatin immunoprecipitation (ChIP), that basonuclin is associated with rDNA promoters in HaCaT cells, a spontaneously established human keratinocyte line. Immunoprecipitation data suggest that basonuclin is in a complex that also contains the subunits of Pol I (RPA194, RPA116), but not UBF. Knocking-down basonuclin in HaCaT cells partially impairs the association of RPA194 to rDNA promoter, but not that of UBF. Basonuclin-deficiency also reduces the amount of 47S pre-rRNA, but this effect can be seen only after cell-proliferation related rRNA synthesis has subsided at a higher cell density. DNA sequence of basonuclin-bound rDNA promoters shows single nucleotide polymorphisms (SNPs) that differ from those associated with UBF-bound promoters, suggesting that basonuclin and UBF interact with different subsets of promoters. In conclusion, our results demonstrate basonuclin's functional association with rDNA promoters and its interaction with Pol I in vivo. Our data also suggest that basonuclin-Pol I complex transcribes a subset of rDNA

    AI-powered Fraud Detection in Decentralized Finance: A Project Life Cycle Perspective

    Full text link
    In recent years, blockchain technology has introduced decentralized finance (DeFi) as an alternative to traditional financial systems. DeFi aims to create a transparent and efficient financial ecosystem using smart contracts and emerging decentralized applications. However, the growing popularity of DeFi has made it a target for fraudulent activities, resulting in losses of billions of dollars due to various types of frauds. To address these issues, researchers have explored the potential of artificial intelligence (AI) approaches to detect such fraudulent activities. Yet, there is a lack of a systematic survey to organize and summarize those existing works and to identify the future research opportunities. In this survey, we provide a systematic taxonomy of various frauds in the DeFi ecosystem, categorized by the different stages of a DeFi project's life cycle: project development, introduction, growth, maturity, and decline. This taxonomy is based on our finding: many frauds have strong correlations in the stage of the DeFi project. According to the taxonomy, we review existing AI-powered detection methods, including statistical modeling, natural language processing and other machine learning techniques, etc. We find that fraud detection in different stages employs distinct types of methods and observe the commendable performance of tree-based and graph-related models in tackling fraud detection tasks. By analyzing the challenges and trends, we present the findings to provide proactive suggestion and guide future research in DeFi fraud detection. We believe that this survey is able to support researchers, practitioners, and regulators in establishing a secure and trustworthy DeFi ecosystem.Comment: 38 pages, update reference

    Monodisperse SiO2 Microspheres with Large Specific Surface Area: Preparation and Particle Size Control

    Get PDF
    Monodisperse SiO2 microspheres have found applications in catalysis, drug delivery, coatings, cosmetics, optical sensing and plastics. The particle size of monodisperse SiO2 microspheres is closely related to its application. In this paper, monodisperse SiO2 microspheres with tunable diameter were successfully synthesized using cetyltrimethylammonium bromide (CTAB) as template. The monodisperse SiO2 microspheres with diameters ranging from 200 nm to 3 μm were obtained by controlling the concentration of CTAB, tetraethyl orthosilicate (TEOS), diethanolamine (DEA) and reaction temperature. The BET surface area could reach 835 m2•g-1 and mean pore diameter was 2.3 nm. The formation mechanism of monodisperse SiO2 microspheres was investigated

    Estimating the global prevalence of secondary hyperparathyroidism in patients with chronic kidney disease

    Get PDF
    BackgroundChronic kidney disease (CKD)-related secondary hyperparathyroidism (SHPT) is associated with higher morbidity and death. The goal of this study was to mine the SHPT data already available to do a meta-analysis on the global prevalence of SHPT caused by CKD.MethodsEmbase, Medline, Web of Science, Cochrane Central Databases, and Google Scholar were searched to identify studies on the prevalence of SHPT due to CKD from inception to November 2023. Pooled prevalence was calculated using the DerSimonian-Laird random effects model with a logit transformation.ResultsTwenty-one eligible studies involving 110977 patients were included. Our results revealed that the estimated global prevalence of SHPT due to CKD was 49.5% (95% CI 30.20–68.18), regardless of the diagnostic criteria. For subgroup analysis, Southern Asia (84.36%, 95% CI 79.35–88.34) had a significantly higher SHPT prevalence than other geographic regions. SHPT due to CKD was most prevalent in China (85.14%, 95% CI 81.74–88.00).ConclusionsSHPT due to CKD is highly prevalent. This necessitates awareness and therapeutic approaches from primary care physicians, medical professionals, and health strategy authorities.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO, identifier CRD42024514007

    Delivery of Quantum Dot-siRNA Nanoplexes in SK-N-SH Cells for BACE1 Gene Silencing and Intracellular Imaging

    Get PDF
    The fluorescent quantum dots (QDs) delivered small interfering RNAs (siRNAs) targeting β-secretase (BACE1) to achieve high transfection efficiency of siRNAs and reduction of β-amyloid (Aβ) in nerve cells. The CdSe/ZnS QDs with the conjugation of amino-polyethylene glycol (PEG) were synthesized. Negatively charged siRNAs were electrostatically adsorbed to the surface of QDs to develop QD-PEG/siRNA nanoplexes. The QD-PEG/siRNAs nanoplexes significantly promote the transfection efficiency of siRNA, and the siRNAs from non-packaged nanoplexes were widely distributed in cell bodies and processes and efficiently silenced BACE1 gene, leading to the reduction of Aβ. The biodegradable PEG polymer coating could protect QDs from being exposed to the intracellular environment and restrained the release of toxic Cd2+. Therefore, the QD-PEG/siRNA nanoplexes reported here might serve as ideal carriers for siRNAs. We developed a novel method of siRNA delivery into nerve cells. We first reported that the QD-PEG/siRNA nanoplexes were generated by the electrostatic interaction and inhibited the Alzheimer's disease (AD)-associated BACE1 gene. We also first revealed the dynamics of QD-PEG/siRNAs within nerve cells via confocal microscopy and the ultrastructural evidences under transmission electron microscopy (TEM). This technology might hold promise for the treatment of neurodegenerative diseases such as AD

    Recent advances in hydrothermal carbonisation:from tailored carbon materials and biochemicals to applications and bioenergy

    Get PDF
    Introduced in the literature in 1913 by Bergius, who at the time was studying biomass coalification, hydrothermal carbonisation, as many other technologies based on renewables, was forgotten during the "industrial revolution". It was rediscovered back in 2005, on the one hand, to follow the trend set by Bergius of biomass to coal conversion for decentralised energy generation, and on the other hand as a novel green method to prepare advanced carbon materials and chemicals from biomass in water, at mild temperature, for energy storage and conversion and environmental protection. In this review, we will present an overview on the latest trends in hydrothermal carbonisation including biomass to bioenergy conversion, upgrading of hydrothermal carbons to fuels over heterogeneous catalysts, advanced carbon materials and their applications in batteries, electrocatalysis and heterogeneous catalysis and finally an analysis of the chemicals in the liquid phase as well as a new family of fluorescent nanomaterials formed at the interface between the liquid and solid phases, known as hydrothermal carbon nanodots

    Mouse Ribosomal RNA Genes Contain Multiple Differentially Regulated Variants

    Get PDF
    Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants) and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA). The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs), which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs) in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active), two are expressed in some tissues (selectively active), and two are not expressed (silent). These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA
    • …
    corecore