1,886 research outputs found
A niche model to predict Microcystis bloom decline in Chaohu Lake, China
Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R =0.998, P < 0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms.Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R =0.998, P < 0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms
Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats
The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II). The blood and urine mercury levels of rats fed with a diet containing Hg (II) and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II) in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system
Isolation of Robinsoniella peoriensis from the fecal material of the endangered Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis
The aim of this study was to determine the causative agent of diarrhea in an endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). From the fecal material collected from this porpoise Robinsoniella peoriensis was isolated. (C) 2013 Elsevier Ltd. All rights reserved.The aim of this study was to determine the causative agent of diarrhea in an endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). From the fecal material collected from this porpoise Robinsoniella peoriensis was isolated. (C) 2013 Elsevier Ltd. All rights reserved
The complete mitochondrial genome of Leiocassis crassilabris (Teleostei, Siluriformes: Bagridae)
The Leiocassis crassilabris is an important economic fish in China, and is widely distributed in south China, e.g. Yangtze River, Pearl River, and Min River, so it is a good model to study population genetics and geological changes of these regions. In this study, the complete mitochondrial genome sequence of L. crassilabris has been obtained with PCR. The gene arrangement and composition L. crassilabris of mitochondrial genome sequence are similar to most of the other vertebrates', which contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region with the total length of 16,530 bp. Except for eight tRNA and ND6 genes, other genes are encoded on heavy-strand (H-strand). Similar to most other vertebrates, the bias of G and C have universality in different region (genes). The complete mitochondrial genome sequence of L. crassilabris would contribute to better understand population genetics, conservation, biogeography, evolution of this lineage.The Leiocassis crassilabris is an important economic fish in China, and is widely distributed in south China, e.g. Yangtze River, Pearl River, and Min River, so it is a good model to study population genetics and geological changes of these regions. In this study, the complete mitochondrial genome sequence of L. crassilabris has been obtained with PCR. The gene arrangement and composition L. crassilabris of mitochondrial genome sequence are similar to most of the other vertebrates', which contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region with the total length of 16,530 bp. Except for eight tRNA and ND6 genes, other genes are encoded on heavy-strand (H-strand). Similar to most other vertebrates, the bias of G and C have universality in different region (genes). The complete mitochondrial genome sequence of L. crassilabris would contribute to better understand population genetics, conservation, biogeography, evolution of this lineage
Molecular cloning and characterization of interferon regulatory factor 1 (IRF-1), IRF-2 and IRF-5 in the chondrostean paddlefish Polyodon spathula and their phylogenetic importance in the Osteichthyes
The interferon regulatory factor (IRF) with its 10 members is a very important gene family related to innate immunity. Currently, most fish IRFs reported are from bony fish (teleosts). Cloning and sequencing of IRFs from chondrosteans, the so-called "ancient fish" including sturgeon, paddlefish, bichir and gar, are absent from the literature. In this study, three IRF genes PsIRF-1, PsIRF-2 and PsIRF-5, were cloned and characterized from the paddlefish (Polyodon spathula). PsIRF-1 includes an open reading frame (ORF) of 972 bp that encodes a putative protein of 324 amino acids; PsIRF-2 includes an ORF of 1023 bp encoding 341 amino acids and P5IRF-5 includes an ORF of 1491 bp that encodes 497 amino acids. The P5IRF-5 gene structure is similar to those in mammals but differs from those in teleosts in the first and second exons. Phylogenetic studies of the putative amino acid sequences of PsIRF-1, PsIRF-2 and PsIRF-5 based on the neighbor-joining and Bayesian inference method for Osteichthyes found widely accepted inter-relationships among actinopterygians and tetrapods. Reverse Transcription Polymerase Chain Reaction (RT-PCR) analysis of PsIRF-1, PsIRF-2 and P5IRF-5 in different paddlefish tissues shows higher levels of expression in gill, spleen and head kidney. Poly (I: C) (polyinosinic-polycytidylic acid) stimulation in vivo up-regulated PsIRF-1 and PsIRF-2 expression, while P5IRF-5 gene expression did not respond to the challenge of Poly (I: C). (C) 2011 Elsevier Ltd. All rights reserved.The interferon regulatory factor (IRF) with its 10 members is a very important gene family related to innate immunity. Currently, most fish IRFs reported are from bony fish (teleosts). Cloning and sequencing of IRFs from chondrosteans, the so-called "ancient fish" including sturgeon, paddlefish, bichir and gar, are absent from the literature. In this study, three IRF genes PsIRF-1, PsIRF-2 and PsIRF-5, were cloned and characterized from the paddlefish (Polyodon spathula). PsIRF-1 includes an open reading frame (ORF) of 972 bp that encodes a putative protein of 324 amino acids; PsIRF-2 includes an ORF of 1023 bp encoding 341 amino acids and P5IRF-5 includes an ORF of 1491 bp that encodes 497 amino acids. The P5IRF-5 gene structure is similar to those in mammals but differs from those in teleosts in the first and second exons. Phylogenetic studies of the putative amino acid sequences of PsIRF-1, PsIRF-2 and PsIRF-5 based on the neighbor-joining and Bayesian inference method for Osteichthyes found widely accepted inter-relationships among actinopterygians and tetrapods. Reverse Transcription Polymerase Chain Reaction (RT-PCR) analysis of PsIRF-1, PsIRF-2 and P5IRF-5 in different paddlefish tissues shows higher levels of expression in gill, spleen and head kidney. Poly (I: C) (polyinosinic-polycytidylic acid) stimulation in vivo up-regulated PsIRF-1 and PsIRF-2 expression, while P5IRF-5 gene expression did not respond to the challenge of Poly (I: C). (C) 2011 Elsevier Ltd. All rights reserved
Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model
Jerusalem artichoke has great potential as future feedstock for bioenergy production because of its high tuber yield (up to 90 t ha(-1)), appropriate biomass characteristics, low input demand, and positive environmental impact. The pyrolytic and kinetic characteristics of Jerusalem artichoke tubers were analyzed at heating rates of 5, 10, 20 and 30 A degrees C min(-1). TG and DTG curves in an inert (nitrogen) atmosphere suggested that there were three distinct stages of mass loss and the major loss occurs between about 190-380 A degrees C. Heating rate brought a lateral shift toward right in the temperature. And, it not only affects the temperature at which the highest mass loss rate reached, but also affect the maximum rate of mass loss. The distributed activation energy model (DAEM) was used to study the pyrolysis kinetics and provided reasonable fits to the experimental data. The activation energy (E) of tubers ranged from 146.40 to 232.45 kJ mol(-1), and the frequency factor (A) changed greatly corresponding to E values at different mass conversion.Jerusalem artichoke has great potential as future feedstock for bioenergy production because of its high tuber yield (up to 90 t ha(-1)), appropriate biomass characteristics, low input demand, and positive environmental impact. The pyrolytic and kinetic characteristics of Jerusalem artichoke tubers were analyzed at heating rates of 5, 10, 20 and 30 A degrees C min(-1). TG and DTG curves in an inert (nitrogen) atmosphere suggested that there were three distinct stages of mass loss and the major loss occurs between about 190-380 A degrees C. Heating rate brought a lateral shift toward right in the temperature. And, it not only affects the temperature at which the highest mass loss rate reached, but also affect the maximum rate of mass loss. The distributed activation energy model (DAEM) was used to study the pyrolysis kinetics and provided reasonable fits to the experimental data. The activation energy (E) of tubers ranged from 146.40 to 232.45 kJ mol(-1), and the frequency factor (A) changed greatly corresponding to E values at different mass conversion
Isolation and expression of grass carp toll-like receptor 5a (CiTLR5a) and 5b (CiTLR5b) gene involved in the response to flagellin stimulation and grass carp reovirus infection
Toll-like receptor 5 (TLR5), a member of Toll-like receptors (TLRs) family and is responsible for the bacterial flagellin recognition in vertebrates, play an important role in innate immunity. In the study, two TLR5 genes of grass carp (Ctenopharyngodon idellus), named CiTLR5a and CiTLR5b, were cloned and analyzed. Both CiTLR5a and CiTLR5b are typical TLR proteins, including LRR motif, transmembrane region and TIR domain. The full-length cDNA of CiTLR5a is 3054 bp long, with a 2646 bp open reading frame (ORF), 78 bp 5' untranslated regions (UTR), and 330 bp 3' UTR. The full-length cDNA of CiTLR5b is 3326 bp, with a 2627 bp ORF, 95 bp 5' UTR, and 594 bp 3' UTR. Phylogenetic analysis showed that CiTLR5a and CiTLR5b were closed to the TLR5 of cirrhinus mrigala, cyprinus_carpio, and danio redo. Subcellular localization indicated that CiTLR5a and CiTLR5b shared similar localization pattern and may locate in the plasma membrane of transfected cells. Real-time quantitative PCR revealed CiTLR5a and CiTLR5b were constitutively expressed in all examined tissues, whereas the highest expressed tissue differed. Following exposure to flagellin and GCRV, CiTLR5a and CiTLR5b were up-regulated significantly. Moreover, the downstream genes of TLR5 signal pathway such as MyD88, NF-kappa B, IRF7, IL-1 beta, and TNF-alpha also up-regulated significantly, whereas the I kappa B gene was down-regulated, suggesting that CiTLR5a and CiTLR5b involved in response to flagellin stimulation and GCRV infection. The results obtained in the study would provide a new insight for further understand the function of TLR5 in teleost fish. (C) 2015 Elsevier Ltd. All rights reserved
Comprehensive Transcriptome Analysis Reveals Accelerated Genic Evolution in a Tibet Fish, Gymnodiptychus pachycheilus
Elucidating the genetic mechanisms of organismal adaptation to the Tibetan Plateau at a genomic scale can provide insights into the process of adaptive evolution. Many highland species have been investigated and various candidate genes that may be responsible for highland adaptation have been identified. However, we know little about the genomic basis of adaptation to Tibet in fishes. Here, we performed transcriptome sequencing of a schizothoracine fish (Gymnodiptychus pachycheilus) and used it to identify potential genetic mechanisms of highland adaptation. We obtained totally 66,105 assembled unigenes, of which 7,232 were assigned as putative one-to-one orthologs in zebrafish. Comparative gene annotations from several species indicated that at least 350 genes lost and 41 gained since the divergence between G. pachycheilus and zebrafish. An analysis of 6,324 orthologs among zebrafish, fugu, medaka, and spotted gar identified consistent evidence for genome-wide accelerated evolution in G. pachycheilus and only the terminal branch of G. pachycheilus had an elevated Ka/Ks ratio than the ancestral branch. Many functional categories related to hypoxia and energy metabolism exhibited rapid evolution in G. pachycheilus relative to zebrafish. Genes showing signature of rapid evolution and positive selection in the G. pachycheilus lineage were also enriched in functions associated with energy metabolism and hypoxia. The first genomic resources for fish in the Tibetan Plateau and evolutionary analyses provided some novel insights into highland adaptation in fishes and served as a foundation for future studies aiming to identify candidate genes underlying the genetic bases of adaptation to Tibet in fishes
Physiological Responses of Synechocystis sp PCC 6803 under Clinorotation
Photosystem efficiency and the characteristic on oxidative stress were examined to elucidate the metabolic responses of Synechocystis sp. PCC 6803 to short-term clinorotation. Results compiled when using clinostat to simulate microgravity for 60 h, showed that clinorotation clearly prohibited the photochemical quantum yield, but promoted the synthesis of chlorophyll and total protein. This may be a compensatory mechanism for the algal cell to maintain its normal metabolism. An increased malondialdehyde (MDA) content of algal cell upon clinorotation, together with an enhanced catalase (CAT) activity was observed during the whole period of clinorotation. One conclusion is that short-term clinorotation acts as a kind of stress, and that these physiological responses may be a special way for an algal cell to adapt itself to a different environment other than earth gravity.Photosystem efficiency and the characteristic on oxidative stress were examined to elucidate the metabolic responses of Synechocystis sp. PCC 6803 to short-term clinorotation. Results compiled when using clinostat to simulate microgravity for 60 h, showed that clinorotation clearly prohibited the photochemical quantum yield, but promoted the synthesis of chlorophyll and total protein. This may be a compensatory mechanism for the algal cell to maintain its normal metabolism. An increased malondialdehyde (MDA) content of algal cell upon clinorotation, together with an enhanced catalase (CAT) activity was observed during the whole period of clinorotation. One conclusion is that short-term clinorotation acts as a kind of stress, and that these physiological responses may be a special way for an algal cell to adapt itself to a different environment other than earth gravity
Topographical distribution of blubber in finless porpoises (Neophocaena asiaeorientalis sunameri): a result from adapting to living in coastal waters
Background: Blubber has many functions, among which energy storage, thermoregulation, buoyancy, and hydrodynamic streamlining are the most frequently cited. Within and between taxa, variations in its structure and distribution likely reflect different adaptations of a species to its life history requirements, environment, health, and function. Here, we use ultrasound to describe the distribution of blubber in the finless porpoise (Neophocaena asiaeorientalis sunameri) based on examinations of 34 fresh cadavers recovered as accidental fisheries bycatch
- …