257,745 research outputs found

### A More Precise Extraction of |V_{cb}| in HQEFT of QCD

The more precise extraction for the CKM matrix element |V_{cb}| in the heavy
quark effective field theory (HQEFT) of QCD is studied from both exclusive and
inclusive semileptonic B decays. The values of relevant nonperturbative
parameters up to order 1/m^2_Q are estimated consistently in HQEFT of QCD.
Using the most recent experimental data for B decay rates, |V_{cb}| is updated
to be |V_{cb}| = 0.0395 \pm 0.0011_{exp} \pm 0.0019_{th} from B\to D^{\ast} l
\nu decay and |V_{cb}| = 0.0434 \pm 0.0041_{exp} \pm 0.0020_{th} from B\to D l
\nu decay as well as |V_{cb}| = 0.0394 \pm 0.0010_{exp} \pm 0.0014_{th} from
inclusive B\to X_c l \nu decay.Comment: 7 pages, revtex, 4 figure

Recommended from our members

### Reliable H∞ filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method

The official published version can be found at the link below.In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach

### Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

Based on a large component QCD derived directly from full QCD by integrating
over the small components of quark fields with $|{\bf p}| < E + m_Q$, an
alternative quantization procedure is adopted to establish a basic theoretical
framework of heavy quark effective field theory (HQEFT) in the sense of
effective quantum field theory. The procedure concerns quantum generators of
Poincare group, Hilbert and Fock space, anticommutations and velocity
super-selection rule, propagator and Feynman rules, finite mass corrections,
trivialization of gluon couplings and renormalization of Wilson loop. The
Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated.
Some new symmetries in the infinite mass limit are discussed. Weak transition
matrix elements and masses of hadrons in HQEFT are well defined to display a
manifest spin-flavor symmetry and $1/m_Q$ corrections. A simple trace
formulation approach is explicitly demonstrated by using LSZ reduction formula
in HQEFT, and shown to be very useful for parameterizing the transition form
factors via $1/m_Q$ expansion. As the heavy quark and antiquark fields in HQEFT
are treated on the same footing in a fully symmetric way, the quark-antiquark
coupling terms naturally appear and play important roles for simplifying the
structure of transition matrix elements, and for understanding the concept of
`dressed heavy quark' - hadron duality. In the case that the `longitudinal' and
`transverse' residual momenta of heavy quark are at the same order of power
counting, HQEFT provides a consistent approach for systematically analyzing
heavy quark expansion in terms of $1/m_Q$. Some interesting features in
applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

### Exclusive B-meson Rare Decays and General Relations of Form Factors in Effective Field Theory of Heavy Quarks

B meson rare decays ($B\to K(K^{*})l\bar l$ and $B\to K^*\gamma$) are
analyzed in the framework of effective field theory of heavy quarks. The
semileptonic and penguin type form factors for these decays are calculated by
using the light cone sum rules method at the leading order of $1/m_Q$
expansion. Four exact relations between the two types of form factors are
obtained at the leading order of $1/m_Q$ expansion. Of particular, the
relations are found to hold for whole momentum transfer region. We also
investigate the validity of the relations resulted from the large energy
effective theory based on the general relations obtained in the present
approach. The branching ratios of the rare decays are presented and their
potential importance for extracting the CKM matrix elements and probing new
physics is emphasized.Comment: 23 pages, Revtex, 32 figures, published version with the errors of
numerical results caused by the computer program are correcte

### Compact and High Performance Dual-band Bandpass Filter Using Resonator-embedded Scheme for WLANs

A compact microstrip dual-band bandpass filter (DBBPF) with high selectivity and good suppression for wireless local area networks (WLANs) is proposed utilizing a novel embedded scheme resonator. Two passbands are produced by a pair of embedded half-wavelength meandered stepped-impedance resonator (MSIR) and a quadwavelength short stub loaded stepped-impedance resonator (SIR) separately. The resonator is fed by folded Tshaped capacitive source-load coupling microstrip feed line, and four transmission zeros are obtained at both sides of the bands to improve selectivity and suppression. Simultaneously, the size of the filter is extermely compact because embedding half-wavelength MSIR only changes the interior configuration of quad-wavelength SIR. To validate the design method, the designed filter is fabricated and measured. Both simulated and measured results indicate that good transmission property has been achieved

- …