34 research outputs found

    DHX15-independent roles for TFIP11 in U6 snRNA modification, U4/U6.U5 tri-snRNP assembly and pre-mRNA splicing fidelity

    Full text link
    International audienceThe U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2’-O-methylation being most common. However, how U6 2’-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2’-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2′-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator

    The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis.

    No full text
    At the heart of the ribosome lie ribosomal RNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N(6)-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N(7)-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme, rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to man, whereby binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Differential Gene Expression Correlates with Behavioural Polymorphism during Collective Behaviour in Cockroaches

    No full text
    Consistent inter-individual variation in the propensity to perform different tasks (animal personality) can contribute significantly to the success of group-living organisms. The distribution of different personalities in a group influences collective actions and therefore how these organisms interact with their environment. However, we have little understanding of the proximate mechanisms underlying animal personality in animal groups, and research on this theme has often been biased towards organisms with advanced social systems. The goal of this study is to investigate the mechanistic basis for personality variation during collective behaviour in a species with rudimentary societies: the American cockroach. We thus use an approach which combines experimental classification of individuals into behavioural phenotypes (‘bold’ and ‘shy’ individuals) with comparative gene expression. Our analyses reveal differences in gene expression between behavioural phenotypes and suggest that social context may modulate gene expression related to bold/shy characteristics. We also discuss how cockroaches could be a valuable model for the study of genetic mechanisms underlying the early steps in the evolution of social behaviour and social complexity. This study provides a first step towards a better understanding of the molecular mechanisms associated with differences in boldness and behavioural plasticity in these organisms

    TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export

    No full text
    Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5′-end of ITS1 (D-A2 segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway

    Characterization of the type III secretion locus of Bordetella pertussis.

    No full text
    Multiple sequence comparisons of proteins of the LcrD/FlbF family allowed the design of primers that specifically amplify sequences coding for type III secretion components. Amplification of Bordetella pertussis DNA with these primers yielded a fragment that was further used as a probe for screening a genomic library. The nucleotide sequence of a positive clone revealed a 2100-bp gene, called bcrD, which specifies a 75-kDa polypeptide homologous to the Yersinia LcrD protein. Chromosome walking allowed the characterization of a 35-kb DNA segment that contains the entire locus and flanking housekeeping genes. The B. pertussis type III secretion locus consists of more than 30 open reading frames (ORFs), most of which are identical to annotated genes of Bordetella spp and share similarities with known type III secretion genes of related bacteria. In order to assess the function of this locus, we engineered a bcrD null mutant. However, none of the tested phenotypes, such as protein secretion, cellular invasion, cytotoxicity or mouse lung colonization, differentiated the mutant from its parental strain. Studies of bcrD and bscN expressions indicated that, under our experimental conditions, these genes are not expressed in vitro. Restriction analyses on pulsed-field gel electrophoresis allowed the type III locus mapping at coordinate position 1,590 kb on the Tohama I strain chromosome.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity

    No full text
    Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Comprehensive identification of diverse ribosomal RNA modifications by targeted nanopore direct RNA sequencing and JACUSA2

    No full text
    Ribosomal RNAs are decorated by numerous post-transcriptional modifications whose exact roles in ribosome biogenesis, function, and human pathophysiology remain largely unknown. Here, we report a targeted direct rRNA sequencing approach involving a substrate selection step and demonstrate its suitability to identify differential modification sites in combination with the JACUSA2 software. We compared JACUSA2 to other tools designed for RNA modification detection and show that JACUSA2 outperforms other software with regard to detection of base modifications such as methylation, acetylation and aminocarboxypropylation. To illustrate its widespread usability, we applied our method to a collection of CRISPR-Cas9 engineered colon carcinoma cells lacking specific enzymatic activities responsible for particular rRNA modifications and systematically compared them to isogenic wild-type RNAs. Besides the numerous 2′-O methylated riboses and pseudouridylated residues, our approach was suitable to reliably identify differential base methylation and acetylation events. Importantly, our method does not require any prior knowledge of modification sites or the need to train complex models. We further report for the first time detection of human rRNA modifications by direct RNA-sequencing on Flongle flow cells, the smallest-scale nanopore flow cell available to date. The use of these smaller flow cells reduces RNA input requirements, making our workflow suitable for the analysis of samples with limited availability and clinical work.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore