3,964 research outputs found
Formation of bi-lobed shapes by sub-catastrophic collisions: A late origin of comet 67P/C-G's structure
The origin of the particular shape of a small body like comet
67P/Churyumov-Gerasimenko (67P/C-G) is a topic of active research. How and when
it acquired its peculiar characteristics has distinct implications on the
origin of the solar system and its dynamics. We investigate how shapes like the
one of comet 67P/C-G can result from a new type of low-energy, sub-catastrophic
impacts involving elongated, rotating bodies. We focus on parameters
potentially leading to bi-lobed structures. We also estimate the probability
for such structures to survive subsequent impacts. We use a smooth particle
hydrodynamics (SPH) shock physics code to model the impacts, the subsequent
reaccumulation of material and the reconfiguration into a stable final shape.
The energy increase as well as the degree of compaction of the resulting bodies
are tracked in the simulations. Our modelling results suggest that the
formation of bi-lobed structures like 67P/C-G is a natural outcome of the low
energy, sub-catastrophic collisions considered here. Sub-catastrophic impacts
have the potential to alter the shape of a small body significantly, without
leading to major heating or compaction. The currently observed shapes of
cometary nuclei, such as 67P/C-G, maybe a result of such a last major shape
forming impact.Comment: Astronomy & Astrophysics, accepted pending minor revision
Catastrophic disruptions revisited
We use a smooth particle hydrodynamics method (SPH) to simulate colliding
rocky and icy bodies from cm-scale to hundreds of km in diameter, in an effort
to define self-consistently the threshold for catastrophic disruption. Unlike
previous efforts, this analysis incorporates the combined effects of material
strength (using a brittle fragmentation model) and self-gravitation, thereby
providing results in the ``strength regime'' and the ``gravity regime'', and in
between. In each case, the structural properties of the largest remnant are
examined.Comment: To appear in Icaru
Migration and giant planet formation
We extend the core-accretion model of giant gaseous planets by Pollack et al.
(\cite{P96}) to include migration, disc evolution and gap formation. Starting
with a core of a fraction of an Earth's mass located at 8 AU, we end our
simulation with the onset of runaway gas accretion when the planet is at 5.5 AU
1 Myr later. This timescale is about a factor ten shorter than the one found by
Pollack et al. (\cite{P96}) even though the disc was less massive initially and
viscously evolving. Other initial conditions can lead to even shorter
timescales. The reason for this speed-up is found to result from the fact that
a moving planet does not deplete its feeding zone to the extend of a static
planet. Thus, the uncomfortably long formation timescale associated with the
core-accretion scenario can be considerably reduced and brought in much better
agreement with the typical disc lifetimes inferred from observations of young
circumstellar discs.Comment: 9 pages, 2 figures, published in A&A Letter
Effects of a giant impact on Uranus
The effects of a giant impact on Uranus with respect to the axis tilt of Uranus and its satellites are discussed. The simulations of possible giant impacts were carried out using Cray supercomputers. The technique used is called smooth particle hydrodynamics (SPH). In this technique, the material in the proto-Uranus planet and in the impactor is divided into a large number of particles which can overlap one another so that local averages over these particles determine density and pressure in the problem, and the particles themselves have their own temperatures and internal energies. During the course of the simulation, these particles move around under the influence of the forces acting on them: gravity and pressure gradients. The results of model simulations are presented
Critical core mass for enriched envelopes: the role of H2O condensation
Context. Within the core accretion scenario of planetary formation, most
simulations performed so far always assume the accreting envelope to have a
solar composition. From the study of meteorite showers on Earth and numerical
simulations, we know that planetesimals must undergo thermal ablation and
disruption when crossing a protoplanetary envelope. Once the protoplanet has
acquired an atmosphere, the primordial envelope gets enriched in volatiles and
silicates from the planetesimals. This change of envelope composition during
the formation can have a significant effect in the final atmospheric
composition and on the formation timescale of giant planets.
Aims. To investigate the physical implications of considering the envelope
enrichment of protoplanets due to the disruption of icy planetesimals during
their way to the core. Particular focus is placed on the effect on the critical
core mass for envelopes where condensation of water can occur.
Methods. Internal structure models are numerically solved with the
implementation of updated opacities for all ranges of metallicities and the
software CEA to compute the equation of state. CEA computes the chemical
equilibrium for an arbitrary mixture of gases and allows the condensation of
some species, including water. This means that the latent heat of phase
transitions is consistently incorporated in the total energy budget.
Results. The critical core mass is found to decrease significantly when an
enriched envelope composition is considered in the internal structure
equations. A particular strong reduction of the critical core mass is obtained
for planets whose envelope metallicity is larger than Z=0.45 when the outer
boundary conditions are suitable for condensation of water to occur in the top
layers of the atmosphere. We show that this effect is qualitatively preserved
when the atmosphere is out of chemical equilibrium.Comment: Accepted for publication in A&
Formation and long-term evolution of 3D vortices in protoplanetary discs
In the context of planet formation, anticyclonic vortices have recently
received lots of attention for the role they can play in planetesimals
formation. Radial migration of intermediate size solids toward the central star
may prevent their growth to larger solid grains. On the other hand, vortices
can trap the dust and accelerate this growth, counteracting fast radial
transport. Multiple effects have been shown to affect this scenario, such as
vortex migration or decay. The aim of this paper is to study the formation of
vortices by the Rossby wave instability and their long term evolution in a full
three dimensional protoplanetary disc. We use a robust numerical scheme
combined with adaptive mesh refinement in cylindrical coordinates, allowing to
affordably compute long term 3D evolutions. We consider a full disc stratified
both radially and vertically that is prone to formation of vortices by the
Rossby wave instability. We show that the 3D Rossby vortices grow and survive
over hundreds of years without migration. The localized overdensity which
initiated the instability and vortex formation survives the growth of the
Rossby wave instability for very long times. When the vortices are no longer
sustained by the Rossby wave instability, their shape changes toward more
elliptical vortices. This allows them to survive shear-driven destruction, but
they may be prone to elliptical instability and slow decay. When the conditions
for growing Rossby wave-related instabilities are maintained in the disc,
large-scale vortices can survive over very long timescales and may be able to
concentrate solids.Comment: Accepted for publication in A&
Theoretical models of planetary system formation. II. Post-formation evolution
We extend the results of planetary formation synthesis by computing the
long-term evolution of synthetic systems from the clearing of the gas disk into
the dynamical evolution phase. We use the symplectic integrator SyMBA to
numerically integrate the orbits of planets for 100 Ma, using populations from
previous studies as initial conditions.We show that within the populations
studied, mass and semi-major axis distributions experience only minor changes
from post-formation evolution. We also show that, depending upon their initial
distribution, planetary eccentricities can statistically increase or decrease
as a result of gravitational interactions. We find that planetary masses and
orbital spacings provided by planet formation models do not result in
eccentricity distributions comparable to observed exoplanet eccentricities,
requiring other phenomena such as e.g. stellar fly-bys to account for observed
eccentricities
Theory of planet formation and comparison with observation: Formation of the planetary mass-radius relationship
The planetary mass-radius diagram is an observational result of central
importance to understand planet formation. We present an updated version of our
planet formation model based on the core accretion paradigm which allows to
calculate planetary radii and luminosities during the entire formation and
evolution of the planets. We first study with it the formation of Jupiter, and
compare with previous works. Then we conduct planetary population synthesis
calculations to obtain a synthetic mass-radius diagram which we compare with
the observed one. Except for bloated Hot Jupiters which can be explained only
with additional mechanisms related to their proximity to the star, we find a
good agreement of the general shape of the observed and the synthetic
mass-radius diagram. This shape can be understood with basic concepts of the
core accretion model.Comment: Proceedings Haute Provence Observatory Colloquium: Detection and
Dynamics of Transiting Exoplanets (23-27 August 2010). Edited by F. Bouchy,
R. F. Diaz & C. Moutou. Extended version: 17 pages, 8 figure
Tidal disruption of inviscid protoplanets
Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized
How primordial is the structure of comet 67P/C-G? Combined collisional and dynamical models suggest a late formation
There is an active debate about whether the properties of comets as observed
today are primordial or, alternatively, if they are a result of collisional
evolution or other processes. We investigate the effects of collisions on a
comet with a structure like 67P/C-G. We develop scaling laws for the critical
specific impact energies required for a significant shape alteration. These are
then used in simulations of the combined dynamical and collisional evolution of
comets in order to study the survival probability of a primordially formed
object with a shape like 67P/C-G. The effects of impacts on comet 67P/C-G are
studied using a SPH shock physics code. The resulting critical specific impact
energy defines a minimal projectile size which is used to compute the number of
shape-changing collisions in a set of dynamical simulations. These simulations
follow the dispersion of the trans-Neptunian disk during the giant planet
instability, the formation of a scattered disk, and produce 87 objects that
penetrate into the inner solar system with orbits consistent with the observed
JFC population. The collisional evolution before the giant planet instability
is not considered here. Hence, our study is conservative in its estimation of
the number of collisions. We find that in any scenario considered here, comet
67P/C-G would have experienced a significant number of shape-changing
collisions, if it formed primordially. This is also the case for generic
bi-lobe shapes. Our study also shows that impact heating is very localized and
that collisionally processed bodies can still have a high porosity. Our study
indicates that the observed bi-lobe structure of comet 67P/C-G may not be
primordial, but might have originated in a rather recent event, possibly within
the last 1 Gy. This may be the case for any kilometer-sized two-component
cometary nuclei.Comment: Astronomy & Astrophysics, accepted pending minor revision
- …