10 research outputs found

    Development of an austenitic/martensitic gradient steel connection by additive manufacturing

    No full text
    Ces travaux de thèse concernent la problématique des liaisons bimétalliques acier austénitique/acier martensitique. Cette action de recherche se focalise sur une liaison acier austénitique 316L (X2 CrNiMo 18-12-02) / acier martensitique Fe-9Cr-1Mo (X10 CrMo 9-1). L’objectif est de comprendre la problématique métallurgique liée à l’assemblage de ces deux types de nuance et d’évaluer les possibilités de réaliser par métallurgie des poudres et par fabrication additive des transitions aciers austénitiques/aciers martensitiques. Une soudure obtenue par faisceau d’électrons sert de liaison de référence pour cette étude qui se focalise sur l’intérêt de la métallurgie des poudres pour réaliser une transition entre deux aciers. Des matériaux à gradient de composition chimique ont été consolidés par CIC et par SPS et montrent de très bonnes propriétés mécaniques et une excellente jonction entre les deux types de nuances. Par fabrication additive (DED-LB ou PBF-LB), nous obtenons aussi de très bonnes liaisons entre les deux aciers mais les microstructures sont beaucoup plus complexes. On observe curieusement que plus la vitesse de refroidissement du procédé est importante et plus la présence de ferrite dans l’acier martensitique est importante. Différents calculs basés sur la germination et la croissance de la phase austénitique ont permis de proposer un scénario cohérent pour expliquer les fractions de phases présentes dans les matériaux. La zone de transition entre les deux aciers présente, elle, de fortes variations de duretés. Ces variations sont expliquées par les changements de composition chimique, entrainant des modifications dans les températures de changement de phases, et les cycles thermiques particuliers vus lors de la fabrication. D’un point de vue technologique, les matériaux obtenus par fabrication additive présentent en traction des performances très semblables à ce que l’on obtient par soudage par faisceau d’électrons. Il est montré que la fabrication additive permet aussi de piloter le gradient de composition entre un acier martensitique et un acier austénitique.This PhD work concerns the problem of bimetallic austenitic/martensitic steel connections. This research action focuses on a 316L austenitic steel (X2 CrNiMo 18-12-02) / Fe-9Cr-1Mo (X10 CrMo 9-1) martensitic steel connection. The objective is to understand the metallurgical problems related to the assembly of these two steels and to evaluate the possibilities of using powder metallurgy and additive manufacturing to produce austenitic/martensitic steel transitions. A weld obtained by electron beam is used as a reference for this study which focuses on the interest of powder metallurgy to achieve a transition between two steels. Materials with a chemical composition gradient have been consolidated by HIP and SPS and show very good mechanical properties and an excellent junction between the two steels. By additive manufacturing (DED-LB or PBF-LB), we also obtain very good bonds between the two steels, but the microstructures are much more complex. Curiously, we observe that the higher the cooling rate, the higher the ferrite fraction in the martensitic steel. Different calculations based on the nucleation and growth of the austenitic phase have made it possible to propose a coherent scenario to explain the phase fractions present in the materials. The transition zone between the two steels shows strong variations in hardness. These variations are explained by changes in chemical composition, leading to modifications in phase change temperatures, and the particular thermal cycles seen during building. From a technological point of view, materials obtained by additive manufacturing have tensile performances very similar to those obtained by electron beam welding. It is shown that additive manufacturing also makes it possible to control the composition gradient between a martensitic and an austenitic steel

    Développement d’une jonction austéno-martensitique à gradient de composition chimique par fabrication additive

    No full text
    This PhD work concerns the problem of bimetallic austenitic/martensitic steel connections. This research action focuses on a 316L austenitic steel (X2 CrNiMo 18-12-02) / Fe-9Cr-1Mo (X10 CrMo 9-1) martensitic steel connection. The objective is to understand the metallurgical problems related to the assembly of these two steels and to evaluate the possibilities of using powder metallurgy and additive manufacturing to produce austenitic/martensitic steel transitions. A weld obtained by electron beam is used as a reference for this study which focuses on the interest of powder metallurgy to achieve a transition between two steels. Materials with a chemical composition gradient have been consolidated by HIP and SPS and show very good mechanical properties and an excellent junction between the two steels. By additive manufacturing (DED-LB or PBF-LB), we also obtain very good bonds between the two steels, but the microstructures are much more complex. Curiously, we observe that the higher the cooling rate, the higher the ferrite fraction in the martensitic steel. Different calculations based on the nucleation and growth of the austenitic phase have made it possible to propose a coherent scenario to explain the phase fractions present in the materials. The transition zone between the two steels shows strong variations in hardness. These variations are explained by changes in chemical composition, leading to modifications in phase change temperatures, and the particular thermal cycles seen during building. From a technological point of view, materials obtained by additive manufacturing have tensile performances very similar to those obtained by electron beam welding. It is shown that additive manufacturing also makes it possible to control the composition gradient between a martensitic and an austenitic steel.Ces travaux de thèse concernent la problématique des liaisons bimétalliques acier austénitique/acier martensitique. Cette action de recherche se focalise sur une liaison acier austénitique 316L (X2 CrNiMo 18-12-02) / acier martensitique Fe-9Cr-1Mo (X10 CrMo 9-1). L’objectif est de comprendre la problématique métallurgique liée à l’assemblage de ces deux types de nuance et d’évaluer les possibilités de réaliser par métallurgie des poudres et par fabrication additive des transitions aciers austénitiques/aciers martensitiques. Une soudure obtenue par faisceau d’électrons sert de liaison de référence pour cette étude qui se focalise sur l’intérêt de la métallurgie des poudres pour réaliser une transition entre deux aciers. Des matériaux à gradient de composition chimique ont été consolidés par CIC et par SPS et montrent de très bonnes propriétés mécaniques et une excellente jonction entre les deux types de nuances. Par fabrication additive (DED-LB ou PBF-LB), nous obtenons aussi de très bonnes liaisons entre les deux aciers mais les microstructures sont beaucoup plus complexes. On observe curieusement que plus la vitesse de refroidissement du procédé est importante et plus la présence de ferrite dans l’acier martensitique est importante. Différents calculs basés sur la germination et la croissance de la phase austénitique ont permis de proposer un scénario cohérent pour expliquer les fractions de phases présentes dans les matériaux. La zone de transition entre les deux aciers présente, elle, de fortes variations de duretés. Ces variations sont expliquées par les changements de composition chimique, entrainant des modifications dans les températures de changement de phases, et les cycles thermiques particuliers vus lors de la fabrication. D’un point de vue technologique, les matériaux obtenus par fabrication additive présentent en traction des performances très semblables à ce que l’on obtient par soudage par faisceau d’électrons. Il est montré que la fabrication additive permet aussi de piloter le gradient de composition entre un acier martensitique et un acier austénitique

    Modelling of delta ferrite to austenite phase transformation kinetics in martensitic steels: application to rapid cooling in additive manufacturing

    No full text
    International audienceIn this paper, the high temperature transformation kinetics of delta ferrite to austenite (δ → γ) phase transformation is modeled by thermodynamic and diffusion calculations. It appears that, in martensitic steels, the δ → γ transformation is very fast (a few nanoseconds) as soon as the first austenite nuclei appears. Classically the austenitic phase will thus systematically be observed in the material during conventional elaboration processes. However, in powder metallurgy and additive manufacturing, it is possible to obtain sufficiently high quenching rates (up to 106 °C/s) so that the γ phase does not have time to appear. The calculations presented here allow to rationalize the understanding of the microstructures of powders and different additive manufacturing materials. They enable to understand why ferrite or martensite is sometimes obtained in the final microstructure. From the calculations made, an original CCT (Continuous Cooling Transformations) diagram starting from the δ phase is proposed. It allows to set up a strategy of grade design or process definition according to the final microstructure targeted

    Laser Beam Direct Energy Deposition of graded austenitic-to-martensitic steel junctions compared to dissimilar Electron Beam welding

    No full text
    International audienceThis article presents the Direct Metal Deposition (DMD) process as a method to build a graded austenitic-to-martensitic steel. Builds are obtained by varying the ratio of the two powders upon DMD processing. Samples with gradual transitions were successfully obtained thanks to the use of a high dilution rate from a layer to another. Long austenitic grains are observed on 316L side when martensitic grains are observed on Fe-9Cr-1Mo side. In the transition zone, the microstructure is mainly martensitic.Characterizations were performed after building and after a tempering heat treatment at 630°C during 8h and compared to dissimilar Electron Beam welds. Before heat treatment, DMD graded area has high hardness values (around 430 HV) due to fresh martensite formed during building. Tempering heat treatment allows reducing hardness in this area to 300 HV. EDS measurements indicate that the chemical gradient between 316L and Fe-9Cr-1Mo obtained by DMD is smoother than the chemical change obtained in Electron Beam (EB) welds. Microstructures in DMD are quite different from those obtained by EB welding. Hardness measurements in DMD samples and in welds exhibit similar behaviours: the weld metal and the Fe-9Cr-1Mo heat affected zone are relatively hard after welding because of fresh martensite, such as the DMD transition zone. These areas are all softened by the tempering heat treatment

    Probabilistic and deterministic full field approaches to simulate recrystallization in ODS steels

    No full text
    International audienceMechanical and functional properties of Oxide Dispersion Strengthened (ODS) ferritic/martensitic steels are strongly related to their microstructures. Thus, numerical modeling of microstructure evolution during ODS forming is of prime importance. In this work, two well-known full field methodologies dedicated to re-crystallization modeling, the level-set and the Monte Carlo methods, are applied, discussed and compared to experimental data in their ability to describe properly recrystallization for ODS steels

    Modélisation 2D en champ complet de la croissance de grains dans les aciers ODS : level-set versus Monte-Carlo

    No full text
    International audienceLa croissance de grains dans un acier ODS au cours d'un traitement thermique a été modélisée en 2D par la méthode level-set (logiciel DIGIMU). Diverses tailles et fractions surfaciques de populations d'oxydes ont été considérées afin de comparer les résultats obtenus aux résultats expérimentaux. Une comparaison des résultats avec ceux obtenus par la méthode stochastique champ complet de type Monte-Carlo est proposée, permettant de mieux appréhender les hypothèses et paramètres utilisés dans ce modèle
    corecore