16 research outputs found

    Do hyperons exist in the interior of neutron stars ?

    Full text link
    In this work we review the role of hyperons on the properties of neutron and proto-neutron stars. In particular, we revise the so-called "hyperon puzzle", go over some of the solutions proposed to tackle it, and discuss the implications that the recent measurements of unusually high neutron star masses have on our present knowledge of hypernuclear physics. We reexamine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.Comment: 19 pages, 9 figures, 1 table. Accepted for publication in the 2015 EPJA Topical Issue on "Exotic Matter in Neutron Stars

    Machine learning light hypernuclei

    Full text link
    We employ a feed-forward artificial neural network to extrapolate at large model spaces the results of {\it ab-initio} hypernuclear No-Core Shell Model calculations for the Λ\Lambda separation energy BΛB_\Lambda of the lightest hypernuclei, Λ3^3_\LambdaH, Λ4^4_\LambdaH and Λ4^4_\LambdaHe, obtained in computationally accessible harmonic oscillator basis spaces using chiral nucleon-nucleon, nucleon-nucleon-nucleon and hyperon-nucleon interactions. The overfitting problem is avoided by enlarging the size of the input dataset and by introducing a Gaussian noise during the training process of the neural network. We find that a network with a single hidden layer of eight neurons is sufficient to extrapolate correctly the value of the Λ\Lambda separation energy to model spaces of size Nmax=100N_{max}=100. The results obtained are in agreement with the experimental data in the case of Λ3^3_\LambdaH and the 0+0^+ state of Λ4^4_\LambdaHe, although they are off of the experiment by about 0.30.3 MeV for both the 0+0^+ and 1+1^+states of Λ4^4_\LambdaH and the 1+1^+ state of Λ4^4_\LambdaHe. We find that our results are in excellent agreement with those obtained using other extrapolation schemes of the No-Core Shell Model calculations, showing this that an ANN is a reliable method to extrapolate the results of hypernuclear No-Core Shell Model calculations to large model spaces.Comment: 16 pages, 7 figures, 1 table. Accepted for publication in Nuclear Physics

    Quark matter nucleation in neutron stars and astrophysical implications

    Get PDF
    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot beta-stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10^{53}~erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.Comment: Invited review paper accepted for publication in EPJ A, Topical Issue on "Exotic Matter in Neutron Stars

    Density dependence of the nuclear symmetry energy: a microscopic perspective

    Get PDF
    We perform a systematic analysis of the density dependence of the nuclear symmetry energy within the microscopic Brueckner--Hartree--Fock (BHF) approach using the realistic Argonne V18 nucleon-nucleon potential plus a phenomenological three body force of Urbana type. Our results are compared thoroughly to those arising from several Skyrme and relativistic effective models. The values of the parameters characterizing the BHF equation of state of isospin asymmetric nuclear matter fall within the trends predicted by those models and are compatible with recent constraints coming from heavy ion collisions, giant monopole resonances or isobaric analog states. In particular we find a value of the slope parameter L=66.5L=66.5 MeV, compatible with recent experimental constraints from isospin diffusion, L=88±25L=88 \pm 25 MeV. The correlation between the neutron skin thickness of neutron-rich isotopes and the slope, LL, and curvature, KsymK_{sym}, parameters of the symmetry energy is studied. Our BHF results are in very good agreement with the correlations already predicted by other authors using non-relativistic and relativistic effective models. The correlations of these two parameters and the neutron skin thickness with the transition density from non-uniform to β\beta-stable matter in neutron stars are also analyzed. Our results confirm that there is an inverse correlation between the neutron skin thickness and the transition density.Comment: 8 figure
    corecore