174 research outputs found
Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with landsat thematic mapper
In this study several pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment are evaluated. GeoCBI (Geo Composite Burn Index) field data of burn severity were correlated with remotely sensed measures, based on the NBR (Normalized Burn Ratio), the NDMI (Normalized Difference Moisture Index) and the NDVI (Normalized Difference Vegetation Index). In addition, the strength of the correlation was evaluated for specific fuel types and the influence of the regression model type is pointed out. The NBR was the best remotely sensed index for assessing burn severity, followed by the NDMI and the NDVI. For this case study of the 2007 Peloponnese fires, results show that the GeoCBI-dNBR (differenced NBR) approach yields a moderate-high R(2) = 0.65. Absolute indices outperformed their relative equivalents, which accounted for pre-fire vegetation state. The GeoCBI-dNBR relationship was stronger for forested ecotypes than for shrub lands. The relationship between the field data and the dNBR and dNDMI (differenced NDMI) was nonlinear, while the GeoCBI-dNDVI (differenced NDVI) relationship appeared linear
Assessing the temporal sensitivity of the differenced Normalized Burn Ratio (dNBR) to estimate burn severity using MODIS time series
A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT)
Spatio-temporal variability in remotely sensed land surface temperature, and its relationship with physiographic variables in the Russian Altay Mountains
Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: accounting for soil brightness variation
Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire-burn severity using multitemporal MODIS imagery
This study evaluates the effects of the large 2007 Peloponnese (Greece) wildfires on changes in broadband surface albedo (a), daytime land surface temperature (LSTd) and night-time LST (LSTn) using a 2-year post-fire time series of Moderate Resolution Imaging Spectroradiometer satellite data. In addition, it assesses the potential of remotely sensed a and LST as indicators for fire-burn severity. Immediately after the fire event, mean a dropped up to 0.039 (standard deviation = 0.012) (P < 0.001), mean LSTd increased up to 8.4 (3.0) K (P < 0.001), and mean LSTn decreased up to -1.2 (1.5) K (P < 0.001) for high-severity plots (P < 0.001). After this initial alteration, fire-induced changes become clearly smaller and seasonality starts governing the a and LST time series. Compared with the fire-induced changes in a and LST, the post-fire NDVI drop was more persistent in time. This temporal constraint restricts the utility of remotely sensed a and LST as indicators for fire-burn severity. For the times when changes in a and LST were significant, the magnitude of changes was related to fire-burn severity, revealing the importance of vegetation as a regulator of land surface energy fluxes
NASA 2014 The Hyperspectral Infrared Imager (HyspIRI) - Science Impact of Deploying Instruments on Separate Platforms
The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was minimal, e.g. if the instruments were on separate platforms that followed each other in a train. The impact of a separation of <1 week was strongly dependent on the question that was being addressed with no impact for some questions and a severe impact for others. The impact of a time separation of several months was severe and in many cases it was no longer possible to answer the sub-question. The impact of deploying the instruments on the ISS which is in a precessive (non-sun synchronous) orbit was also very question dependent, in some cases it was possible to go beyond the original question, e.g. to examine the impact of the diurnal cycle, whereas in other cases the question could not be addressed for example if the question required observations from the polar regions. As part of the study, the participants were asked to estimate, as a percentage, how completely a given sub-question could be answered with 100% indicating the question could be completely answered. These estimations should be treated with caution but nonetheless can be useful in assessing the impact. Averaging the estimates for each of the combined questions the results indicate that 97% of the questions could be answered with a separation of < 3 minutes. With a separation of < 1 week, 67% of the questions could be answered and with a separation of several months only 21% of the questions could be answered
- …