516 research outputs found
Cascade R-CNN: Delving into High Quality Object Detection
In object detection, an intersection over union (IoU) threshold is required
to define positives and negatives. An object detector, trained with low IoU
threshold, e.g. 0.5, usually produces noisy detections. However, detection
performance tends to degrade with increasing the IoU thresholds. Two main
factors are responsible for this: 1) overfitting during training, due to
exponentially vanishing positive samples, and 2) inference-time mismatch
between the IoUs for which the detector is optimal and those of the input
hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is
proposed to address these problems. It consists of a sequence of detectors
trained with increasing IoU thresholds, to be sequentially more selective
against close false positives. The detectors are trained stage by stage,
leveraging the observation that the output of a detector is a good distribution
for training the next higher quality detector. The resampling of progressively
improved hypotheses guarantees that all detectors have a positive set of
examples of equivalent size, reducing the overfitting problem. The same cascade
procedure is applied at inference, enabling a closer match between the
hypotheses and the detector quality of each stage. A simple implementation of
the Cascade R-CNN is shown to surpass all single-model object detectors on the
challenging COCO dataset. Experiments also show that the Cascade R-CNN is
widely applicable across detector architectures, achieving consistent gains
independently of the baseline detector strength. The code will be made
available at https://github.com/zhaoweicai/cascade-rcnn
Semantically Consistent Regularization for Zero-Shot Recognition
The role of semantics in zero-shot learning is considered. The effectiveness
of previous approaches is analyzed according to the form of supervision
provided. While some learn semantics independently, others only supervise the
semantic subspace explained by training classes. Thus, the former is able to
constrain the whole space but lacks the ability to model semantic correlations.
The latter addresses this issue but leaves part of the semantic space
unsupervised. This complementarity is exploited in a new convolutional neural
network (CNN) framework, which proposes the use of semantics as constraints for
recognition.Although a CNN trained for classification has no transfer ability,
this can be encouraged by learning an hidden semantic layer together with a
semantic code for classification. Two forms of semantic constraints are then
introduced. The first is a loss-based regularizer that introduces a
generalization constraint on each semantic predictor. The second is a codeword
regularizer that favors semantic-to-class mappings consistent with prior
semantic knowledge while allowing these to be learned from data. Significant
improvements over the state-of-the-art are achieved on several datasets.Comment: Accepted to CVPR 201
Learning Complexity-Aware Cascades for Deep Pedestrian Detection
The design of complexity-aware cascaded detectors, combining features of very
different complexities, is considered. A new cascade design procedure is
introduced, by formulating cascade learning as the Lagrangian optimization of a
risk that accounts for both accuracy and complexity. A boosting algorithm,
denoted as complexity aware cascade training (CompACT), is then derived to
solve this optimization. CompACT cascades are shown to seek an optimal
trade-off between accuracy and complexity by pushing features of higher
complexity to the later cascade stages, where only a few difficult candidate
patches remain to be classified. This enables the use of features of vastly
different complexities in a single detector. In result, the feature pool can be
expanded to features previously impractical for cascade design, such as the
responses of a deep convolutional neural network (CNN). This is demonstrated
through the design of a pedestrian detector with a pool of features whose
complexities span orders of magnitude. The resulting cascade generalizes the
combination of a CNN with an object proposal mechanism: rather than a
pre-processing stage, CompACT cascades seamlessly integrate CNNs in their
stages. This enables state of the art performance on the Caltech and KITTI
datasets, at fairly fast speeds
SCOUT: Self-aware Discriminant Counterfactual Explanations
The problem of counterfactual visual explanations is considered. A new family
of discriminant explanations is introduced. These produce heatmaps that
attribute high scores to image regions informative of a classifier prediction
but not of a counter class. They connect attributive explanations, which are
based on a single heat map, to counterfactual explanations, which account for
both predicted class and counter class. The latter are shown to be computable
by combination of two discriminant explanations, with reversed class pairs. It
is argued that self-awareness, namely the ability to produce classification
confidence scores, is important for the computation of discriminant
explanations, which seek to identify regions where it is easy to discriminate
between prediction and counter class. This suggests the computation of
discriminant explanations by the combination of three attribution maps. The
resulting counterfactual explanations are optimization free and thus much
faster than previous methods. To address the difficulty of their evaluation, a
proxy task and set of quantitative metrics are also proposed. Experiments under
this protocol show that the proposed counterfactual explanations outperform the
state of the art while achieving much higher speeds, for popular networks. In a
human-learning machine teaching experiment, they are also shown to improve mean
student accuracy from chance level to 95\%.Comment: Accepted to CVPR202
- …