885 research outputs found

    CP violation in D decays

    Full text link
    First evidence for CPC P violation in two-body singly Cabibbo-suppressed decays of D0D^0 mesons reported by LHCb has recently aroused great interest in charm physics. In this document the latest measurements of CPC P violation in the charm sector are discussed. LHCb and CDF results on time-integrated CPC P asymmetries in D0ππ+D^0 \to \pi^-\pi^+ and D0KK+D^0 \to K^-K^+ decays are presented in some detail. A search for CPC P violation performed by Belle in other two-body decays, namely D0KS0π0D^0 \to K^0_S \pi^0, D0KS0η()D^0 \to K^0_S \eta^{(\prime)}, D(s)+ϕπ+D^+_{(s)} \to \phi \pi^+ and D+π+η()D^+ \to \pi^+ \eta^{(\prime)}, is also presented. Finally, results obtained by CDF with D0KS0π+πD^0 \to K^0_S \pi^+\pi^- decays, as well as by LHCb and BaBar with other multi-body DD decays, are shown.Comment: 6 pages, 7 figures, Presented at Flavor Physics and CP Violation (FPCP 2012), Hefei, China, May 21-25, 201

    Precision physics with heavy-flavoured hadrons

    Full text link
    The understanding of flavour dynamics is one of the key aims of elementary particle physics. The last 15 years have witnessed the triumph of the Kobayashi-Maskawa mechanism, which describes all flavour changing transitions of quarks in the Standard Model. This important milestone has been reached owing to a series of experiments, in particular to those operating at the so-called BB factories, at the Tevatron, and now at the LHC. We briefly review status and perspectives of flavour physics, highlighting the results where the LHC has given the most significant contributions, notably including the recent observation of the Bs0μ+μB_s^0\to\mu^+\mu^- decayComment: 31 pages, 10 figures in 60 Years of CERN Experiments and Discoveries, Advanced Series on Directions in High Energy Physics 23 (2015), World Scientific Publishin

    Development of an MCP-Based Timing Layer for the LHCb ECAL Upgrade-2

    Get PDF
    The increase in instantaneous luminosity during the high-luminosity phase of the LHC represents a significant challenge for future detectors. A strategy to cope with high-pileup conditions is to add a fourth dimension to the measurements of the hits, by exploiting the time separation of the various proton–proton primary collisions. According to LHCb simulation studies, resolutions of about 10–20 picoseconds, at least an order of magnitude shorter than the average time span between primary interactions, would be greatly beneficial for the physics reach of the experiment. Microchannel plate (MCP) photomultipliers are compact devices capable of measuring the arrival time of charged particles with the required resolution. The technology of large-area picosecond photodetectors (LAPPDs) is under investigation to implement a timing layer that can be placed within a sampling calorimeter module with the purpose of measuring the arrival time of electromagnetic showers. LAPPD performances, using a Gen-I tile with a delay-line anode and a Gen-II with a capacitively coupled anode, have been measured thoroughly both with laser (wavelength of 405 nm and pulse width of 27.5 ps FWHM) and high-energy electron (1–5.8 GeV) beams. Time resolutions of the order of 30 ps for single photoelectrons and 15 ps for electromagnetic showers initiated by 5 GeV electrons, as measured at the shower maximum, are obtained

    Standard Model updates and new physics analysis with the Unitarity Triangle fit

    Full text link
    We present here the update of the Unitarity Triangle (UT) analysis performed by the UTfit Collaboration within the Standard Model (SM) and beyond. Continuously updated flavour results contribute to improving the precision of several constraints and through the global fit of the CKM parameters and the SM predictions. We also extend the UT analysis to investigate new physics (NP) effects on ΔF=2\Delta F=2 processes. Finally, based on the NP constraints, we derive upper bounds on the coefficients of the most general ΔF=2\Delta F=2 effective Hamiltonian. These upper bounds can be translated into lower bounds on the scale of NP that contributes to these low-energy effective interactions.Comment: Proceedings of the 8th International Workshop on the CKM Unitarity Triangle (CKM 2014), Vienna, Austria, September 8-12, 201

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV