15 research outputs found

    Geometry and Dynamics with Time-Dependent Constraints

    Get PDF
    We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.Comment: 8 pages, Plain TeX, CERN-TH.7392/94 and MPI-PhT/94-4

    Tensor distributions on signature-changing space-times

    Get PDF
    Irregularities in the metric tensor of a signature-changing space-time suggest that field equations on such space-times might be regarded as distributional. We review the formalism of tensor distributions on differentiable manifolds, and examine to what extent rigorous meaning can be given to field equations in the presence of signature-change, in particular those involving covariant derivatives. We find that, for both continuous and discontinuous signature-change, covariant differentiation can be defined on a class of tensor distributions wide enough to be physically interesting.Comment: 9 pages, LaTeX 2.0

    On quantum and parallel transport in a Hilbert bundle over spacetime

    Full text link
    We study the Hilbert bundle description of stochastic quantum mechanics in curved spacetime developed by Prugove\v{c}ki, which gives a powerful new framework for exploring the quantum mechanical propagation of states in curved spacetime. We concentrate on the quantum transport law in the bundle, specifically on the information which can be obtained from the flat space limit. We give a detailed proof that quantum transport coincides with parallel transport in the bundle in this limit, confirming statements of Prugove\v{c}ki. We furthermore show that the quantum-geometric propagator in curved spacetime proposed by Prugove\v{c}ki, yielding a Feynman path integral-like formula involving integrations over intermediate phase space variables, is Poincar\'e gauge covariant (i.e. ⁣\! is gauge invariant except for transformations at the endpoints of the path) provided the integration measure is interpreted as a ``contact point measure'' in the soldered stochastic phase space bundle raised over curved spacetime.Comment: 25 pages, Plain TeX, harvmac/lanlma

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio
    corecore