3 research outputs found

    A mathematical model of serious and minor criminal activity

    Get PDF

    Mathematical modelling of criminal activity

    Get PDF
    Using mathematical methods to understand and model crime is a recent idea that has drawn considerable attention from researchers during the last fifteen years. From the plethora of models that have been proposed, perhaps the most successful one has been a diffusion-type partial differential equations model that describes how the number of criminals evolves in a specific area. We propose a number of versions of this model that allow for two distinct criminal types associated with serious and minor crime. Additionally, we examine stochastic variants of the model and present numerical solutions. Our model’s assumptions are supported by analysing spatiotemporal data of criminal activity in England and the USA

    Asymptotic analysis and applications to mathematical modelling

    No full text
    89 σ.Στη συγκεκριμένη εργασία εξετάζονται προβλήματα της μαθηματικής προτυποποίησης καθώς και η επίλυσή τους με μεθόδους ασυμπτωτικής ανάλυσης. Πιο συγκεκριμένα, παρουσιάζονται εφαρμογές από την εφαρμοσμένη Μηχανική (στερέων και ρευστών), τη Χημεία, τη βιομηχανική παραγωγή και τη Βιολογία. Χρησιμοποιούνται μέθοδοι της ασυμπτωτικής ανάλυσης όπως κανονικές διαταραχές σε συνήθεις/μερικές διαφορικές εξισώσεις, θεωρία οριακού στρώματος, θεωρία πολλαπλών κλιμάκων / μέθοδος WKBJ, θεωρία ακτινών και μέθοδοι Laplace και στάσιμης φάσης για ολοκληρώματα. Η αντίστοιχη θεωρία παρουσιάζεται είτε παράλληλα με κάποια εφαρμογή είτε ανεξάρτητα στο παράρτημα.In this dissertation we examine a number of problems that arise from the mathematical modelling of some phenomena as well as their solutions by means of asymptotic methods. Several applications from applied Mechanics (both solid and liquid), Chemistry, industrial production and Biology are discussed. Their solutions utilise a variety of methods from asymptotic analysis, such as normal perturbations in ordinary and partial differential equations, boundary layer theory, multiple scale theory / WKB method, ray theory and the methods of Laplace and stationary phase for integrals. The theoretical background of these methods is either presented as part of a specific application or can be found in the appendix.Μιχαήλ Ν. Τσάρδακα
    corecore