1,179 research outputs found
Counting Steiner triple systems with classical parameters and prescribed rank
By a famous result of Doyen, Hubaut and Vandensavel \cite{DHV}, the 2-rank of
a Steiner triple system on points is at least , and equality
holds only for the classical point-line design in the projective geometry
. It follows from results of Assmus \cite{A} that, given any integer
with , there is a code containing
representatives of all isomorphism classes of STS with 2-rank at most
. Using a mixture of coding theoretic, geometric, design
theoretic and combinatorial arguments, we prove a general formula for the
number of distinct STS with 2-rank at most contained
in this code. This generalizes the only previously known cases, , proved
by Tonchev \cite{T01} in 2001, , proved by V. Zinoviev and D. Zinoviev
\cite{ZZ12} in 2012, and (V. Zinoviev and D. Zinoviev \cite{ZZ13},
\cite{ZZ13a} (2013), D. Zinoviev \cite{Z16} (2016)), while also unifying and
simplifying the proofs. This enumeration result allows us to prove lower and
upper bounds for the number of isomorphism classes of STS with 2-rank
exactly (or at most) . Finally, using our recent systematic
study of the ternary block codes of Steiner triple systems \cite{JT}, we obtain
analogous results for the ternary case, that is, for STS with 3-rank at
most (or exactly) . We note that this work provides the first
two infinite families of 2-designs for which one has non-trivial lower and
upper bounds for the number of non-isomorphic examples with a prescribed
-rank in almost the entire range of possible ranks.Comment: 27 page
- β¦