166 research outputs found
Evolution of Angular Momentum Distribution during Star Formation
If the angular momentum of the molecular cloud core were conserved during the
star formation process, a new-born star would rotate much faster than its
fission speed. This constitutes the angular momentum problem of new-born stars.
In this paper, the angular momentum transfer in the contraction of a rotating
magnetized cloud is studied with axisymmetric MHD simulations. Owing to the
large dynamic range covered by the nested-grid method, the structure of the
cloud in the range from 10 AU to 0.1 pc is explored. First, the cloud
experiences a run-away collapse, and a disk forms perpendicularly to the
magnetic field, in which the central density increases greatly in a finite
time-scale. In this phase, the specific angular momentum j of the disk
decreases to of the initial cloud. After the central density of
the disk exceeds , the infall on to the central
object develops. In this accretion stage, the rotation motion and thus the
toroidal magnetic field drive the outflow. The angular momentum of the central
object is transferred efficiently by the outflow as well as the effect of the
magnetic stress. In 7000 yr from the core formation, the specific angular
momentum of the central decreases a factor of 10^{-4} from the
initial value (i.e. from to ).Comment: 15 pages, 2 figures, Astrophysical Journal Letters in pres
Collapse of Rotating Magnetized Molecular Cloud Cores and Mass Outflows
Collapse of the rotating magnetized molecular cloud core is studied with the
axisymmetric magnetohydrodynamical (MHD) simulations. Due to the change of the
equation of state of the interstellar gas, the molecular cloud cores experience
several different phases as collapse proce eds. In the isothermal run-away
collapse (), a pseudo-disk is formed and
it continues to contract till the opaque core is fo rmed at the center. In this
disk, a number of MHD fast and slow shock pairs appear running parallelly to
the disk. After the equation of state becomes hard, an adiabatic core is
formed, which is separated from the isothermal contracting pseudo-disk by the
accretion shock front facing radially outwards. By the effect of the magnetic
tension, the angular momentum is transferred from the disk mid-plane to the
surface. The gas with excess angular momentum near the surface is finally
ejected, which explains the molecular bipolar outflow. Two types of outflows
are observed. When the poloidal magnetic field is strong (magnetic energy is
comparable to the thermal one), a U-shaped outflow is formed in which fast
moving gas is confined to the wall whose shape looks like a capit al letter U.
The other is the turbulent outflow in which magnetic field lines and velocity
fi elds are randomly oriented. In this case, turbulent gas moves out almost
perpendicularly from the disk. The continuous mass accretion leads to the
quasistatic contraction of the first core. A second collapse due to
dissociation of H in the first core follows. Finally another quasistatic
core is again formed by atomic hydrogen (the second core). It is found that
another outflow is ejected around the second atomic core, which seems to
correspond to the optical jets or the fast neutral winds.Comment: submitted to Ap
On the Energy Required to Eject Processed Matter from Galaxies
We evaluate the minimum energy input rate that starbursts require for
expelling their newly processed matter from their host galaxies. Special
attention is given to the pressure caused by the environment in which a galaxy
is situated, as well as to the intrinsic rotation of the gaseous component. We
account for these factors and for a massive dark matter distribution, and
develop a self-consistent solution for the interstellar matter gas
distribution. Our results are in excellent agreement with the results of Mac
Low & Ferrara (1999) for galaxies with a flattened disk-like ISM density
distribution and a low intergalactic gas pressure ( 1
cm K). However, our solution also requires a much larger energy input
rate threshold when one takes into consideration both a larger intergalactic
pressure and the possible existence of a low-density, non-rotating, extended
gaseous halo component.Comment: 7 pages, 4 figures, 1 table, Accepted for publication in Ap
Formation of the First Stars by Accretion
The process of star formation from metal-free gas is investigated by
following the evolution of accreting protostars with emphasis on the properties
of massive objects. The main aim is to establish the physical processes that
determine the upper mass limit of the first stars. Although the consensus is
that massive stars were commonly formed in the first cosmic structures, our
calculations show that their actual formation depends sensitively on the mass
accretion rate and its time variation. Even in the rather idealized case in
which star formation is mainly determined by dot{M}acc, the characteristic mass
scale of the first stars is rather uncertain. We find that there is a critical
mass accretion rate dot{M}crit = 4 10^{-3} Msun/yr that separates solutions
with dot{M}acc> 100 Msun can form,
provided there is sufficient matter in the parent clouds, from others
(dot{M}acc > dot{M}crit) where the maximum mass limit decreases as dot{M}acc
increases. In the latter case, the protostellar luminosity reaches the
Eddington limit before the onset of hydrogen burning at the center via the
CN-cycle. This phase is followed by a rapid and dramatic expansion of the
radius, possibly leading to reversal of the accretion flow when the stellar
mass is about 100Msun. (abridged)Comment: 34 pages, 12 figures. ApJ, in pres
HCN to HCO^+ Millimeter Line Diagnostics of AGN Molecular Torus I : Radiative Transfer Modeling
We explore millimeter line diagnostics of an obscuring molecular torus
modeled by a hydrodynamic simulation with three-dimensional nonLTE radiative
transfer calculations. Based on the results of high-resolution hydrodynamic
simulation of the molecular torus around an AGN, we calculate intensities of
HCN and HCO^{+} rotational lines as two representative high density tracers.
The three-dimensional radiative transfer calculations shed light on a
complicated excitation state in the inhomogeneous torus, even though a
spatially uniform chemical structure is assumed. Our results suggest that HCN
must be much more abundant than HCO^{+} in order to obtain a high ratio
() observed in some of the nearby galaxies. There is a
remarkable dispersion in the relation between integrated intensity and column
density, indicative of possible shortcomings of HCN(1-0) and HCO^{+}(1-0) lines
as high density tracers. The internal structures of the inhomogeneous molecular
torus down to subparsec scale in external galaxies will be revealed by the
forthcoming Atacama Large Millimeter/submillimeter Array (ALMA). The
three-dimensional radiative transfer calculations of molecular lines with
high-resolution hydrodynamic simulation prove to be a powerful tool to provide
a physical basis for molecular line diagnostics of the central regions of
external galaxies.Comment: 29 pages, 13 figures, Accepted for publication in ApJ, For high
resolution figures see http://alma.mtk.nao.ac.jp/~masako/MS72533v2.pd
Pre-Existing Superbubbles as the Sites of Gamma-Ray Bursts
According to recent models, gamma-ray bursts apparently explode in a wide
variety of ambient densities ranging from ~ 10^{-3} to 30 cm^{-3}. The lowest
density environments seem, at first sight, to be incompatible with bursts in or
near molecular clouds or with dense stellar winds and hence with the
association of gamma-ray bursts with massive stars. We argue that low ambient
density regions naturally exist in areas of active star formation as the
interiors of superbubbles. The evolution of the interior bubble density as a
function of time for different assumptions about the evaporative or
hydrodynamical mass loading of the bubble interior is discussed. We present a
number of reasons why there should exist a large range of inferred afterglow
ambient densities whether gamma-ray bursts arise in massive stars or some
version of compact star coalescence. We predict that many gamma-ray bursts will
be identified with X-ray bright regions of galaxies, corresponding to
superbubbles, rather than with blue localized regions of star formation.
Massive star progenitors are expected to have their own circumstellar winds.
The lack of evidence for individual stellar winds associated with the
progenitor stars for the cases with afterglows in especially low density
environments may imply low wind densities and hence low mass loss rates
combined with high velocities. If gamma-ray bursts are associated with massive
stars, this combination might be expected for compact progenitors with
atmospheres dominated by carbon, oxygen or heavier elements, that is,
progenitors resembling Type Ic supernovae.Comment: 14 pages, no figures, submitted to The Astrophysical Journa
Three-Dimensional Simulations of a Starburst-Driven Galactic Wind
We have performed a series of three-dimensional simulations of a
starburst-driven wind in an inhomogeneous interstellar medium. The introduction
of an inhomogeneous disk leads to differences in the formation of a wind, most
noticeably the absence of the ``blow-out'' effect seen in homogeneous models. A
wind forms from a series of small bubbles that propagate into the tenuous gas
between dense clouds in the disk. These bubbles merge and follow the path of
least resistance out of the disk, before flowing freely into the halo.
Filaments are formed from disk gas that is broken up and accelerated into the
outflow. These filaments are distributed throughout a biconical structure
within a more spherically distributed hot wind. The distribution of the
inhomogeneous interstellar medium in the disk is important in determining the
morphology of this wind, as well as the distribution of the filaments. While
higher resolution simulations are required in order to ascertain the importance
of mixing processes, we find that soft X-ray emission arises from gas that has
been mass-loaded from clouds in the disk, as well as from bow shocks upstream
of clouds, driven into the flow by the ram pressure of the wind, and the
interaction between these shocks.Comment: 37 pages, 16 figures, mpg movie can be obtained at
http://www.mso.anu.edu.au/~jcooper/movie/video16.mpg, accepted for
publication in Ap
The Escape of Ionizing Photons from OB Associations in Disk Galaxies: Radiation Transfer Through Superbubbles
By solving the time-dependent radiation transfer problem of stellar radiation
through evolving superbubbles within a smoothly varying HI distribution, we
estimate the fraction of ionizing photons emitted by OB associations that
escapes the HI disk of our Galaxy into the halo and intergalactic medium (IGM).
We consider both coeval star-formation and a Gaussian star-formation history
with a time spread sigma_t = 2 Myr. We consider both a uniform H I distribution
and a two-phase (cloud/intercloud) model, with a negligible filling factor of
hot gas. We find that the shells of the expanding superbubbles quickly trap or
attenuate the ionizing flux, so that most of the escaping radiation escapes
shortly after the formation of the superbubble. For the coeval star-formation
history, the total fraction of Lyman Continuum photons that escape both sides
of the disk in the solar vicinity is f_esc approx 0.15 +/- 0.05. For the
Gaussian star formation history, f_esc approx 0.06 +/- 0.03, a value roughly a
factor of two lower than the results of Dove & Shull (1994), where superbubbles
were not considered. For a local production rate of ionizing photons Psi_LyC =
4.95 X 10^7 cm^{-2} s^{-1}, the flux escaping the disk is Phi_LyC approx
(1.5-3.0) X 10^6 cm^{-2} s^{-1} for coeval and Gaussian star formation,
comparable to the flux required to sustain the Reynolds layer.Comment: Revised version (expanded), accepted for publication by ApJ, 38
pages, 8 figures, aasms4.sty and aabib.sty files include
Galaxies in box: A simulated view of the interstellar medium
We review progress in the development of physically realistic three
dimensional simulated models of the galaxy.We consider the scales from star
forming molecular clouds to the full spiral disc. Models are computed using
hydrodynamic (HD) or magnetohydrodynamic (MHD) equations and may include cosmic
ray or tracer particles. The range of dynamical scales between the full galaxy
structure and the turbulent scales of supernova (SN) explosions and even cloud
collapse to form stars, make it impossible with current computing tools and
resources to resolve all of these in one model. We therefore consider a
hierarchy of models and how they can be related to enhance our understanding of
the complete galaxy.Comment: Chapter in Large Scale Magnetic Fields in the Univers
- …
