390 research outputs found

    Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    Full text link
    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. In a further step, this frequency comb is fully phase stabilized. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequency combs and providing a path for their generation in the visible and UV. Our results underscore the utility and effectiveness of planar microresonator frequency comb technology, that offers the potential to make frequency metrology accessible beyond specialized laboratories.Comment: Changes: - Added data (new Fig.4) on the first full phase stabilization of a dissipative Kerr soliton (or dissipative cavity soliton) in a microresonator - Extended Fig. 8 in the SI - Introduced nomenclature of dissipative Kerr solitons - Minor other change

    Reference pricing and cost-sharing: Theory and evidence on German off-patent drugs

    Full text link
    This paper evaluates the impact of reference pricing on prices and co-payments in the (German) market for off-patent pharmaceuticals. We present a theoretical model with price-sensitive and loyal consumers that shows that a decrease in the reference price affects the consumers' co-payments in a non-monotonic way: For high reference prices, a marginally lower reference price may lead to lower co-payments. However, for low reference prices a further reduction may result into higher consumer co-payments. We use quarterly data on reference priced drugs covered by the social health insurance in Germany over the period 2007 - 2010 to analyze the empirical effects of reference price reductions. We find that, while prices decrease due to the reduction, co-payments behave non-monotonically and indeed increase if the reference price is sufficiently low

    Octave Spanning Frequency Comb on a Chip

    Full text link
    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks

    Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble

    Full text link
    We demonstrate quantum control of a large spin-angular momentum associated with the F=3 hyperfine ground state of 133Cs. A combination of time dependent magnetic fields and a static tensor light shift is used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states, and may lead to improvement of some precision measurements.Comment: 4 pages, 4 figures (color

    Coherent terabit communications with microresonator Kerr frequency combs

    Full text link
    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions enables low phase-noise Kerr combs with singlet spectral lines. Here we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In a first experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment shows feedback-stabilization of a Kerr comb and transmission of a 1.44 Tbit/s data stream over a distance of up to 300 km. The results demonstrate that Kerr combs can meet the highly demanding requirements of multi-terabit/s coherent communications and thus offer a solution towards chip-scale terabit/s transceivers

    Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb

    Get PDF
    The quest for extrasolar planets and their characterisation as well as studies of fundamental physics on cosmological scales rely on capabilities of high-resolution astronomical spectroscopy. A central requirement is a precise wavelength calibration of astronomical spectrographs allowing for extraction of subtle wavelength shifts from the spectra of stars and quasars. Here, we present an all-fibre, 400 nm wide near-infrared frequency comb based on electro-optic modulation with 14.5 GHz comb line spacing. Tests on the high-resolution, near-infrared spectrometer GIANO-B show a photon-noise limited calibration precision of <10 cm/s as required for Earth-like planet detection. Moreover, the presented comb provides detailed insight into particularities of the spectrograph such as detector inhomogeneities and differential spectrograph drifts. The system is validated in on-sky observations of a radial velocity standard star (HD221354) and telluric atmospheric absorption features. The advantages of the system include simplicity, robustness and turn-key operation, features that are valuable at the observation sites

    Biharmonic wave maps into spheres

    Get PDF
    A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed. The equation is reformulated as a conservation law and solved by a suitable Ginzburg-Landau type approximation

    More cost-sharing, less cost? Evidence on reference price drugs

    Get PDF
    This paper evaluates the causal effects of changes in reference prices (RP) on prices, copayments, and overall expenditures for off-patent pharmaceuticals. With reference pricing, firms set prices freely and the health plan covers the expenses only up to a certain threshold. We use quarterly data of the German market for anti-epileptics at the package level and at the active substance level and exploit that the RP has been adjusted in some of the active substances but not in others in a difference-in-differences framework. At the product level, we find that a lower RP reduces prices for both brand-name drugs and generics, but leads to higher copayments, especially for brand-name drugs. At the aggregate level, we find that a lower RP leads to savings for the public health insurer since revenues decrease substantially for brand-name firms and, to a lesser extent, also for generic firms. Overall expenditures (payments by the health insurer and the patients) for brand-name drugs decrease in proportion to the decrease in the RP, while the adjustment does not significantly influence overall expenditures for generics

    I-BEAT: New ultrasonic method for single bunch measurement of ion energy distribution

    Full text link
    The shape of a wave carries all information about the spatial and temporal structure of its source, given that the medium and its properties are known. Most modern imaging methods seek to utilize this nature of waves originating from Huygens' principle. We discuss the retrieval of the complete kinetic energy distribution from the acoustic trace that is recorded when a short ion bunch deposits its energy in water. This novel method, which we refer to as Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a generalization of the ionoacoustic approach. Featuring compactness, simple operation, indestructibility and high dynamic ranges in energy and intensity, I-BEAT is a promising approach to meet the needs of petawatt-class laser-based ion accelerators. With its capability of completely monitoring a single, focused proton bunch with prompt readout it, is expected to have particular impact for experiments and applications using ultrashort ion bunches in high flux regimes. We demonstrate its functionality using it with two laser-driven ion sources for quantitative determination of the kinetic energy distribution of single, focused proton bunches.Comment: Paper: 17 Pages, 3 figures Supplementary Material 16 pages, 7 figure
    corecore