390 research outputs found
Photonic chip based optical frequency comb using soliton induced Cherenkov radiation
By continuous wave pumping of a dispersion engineered, planar silicon nitride
microresonator, continuously circulating, sub-30fs short temporal dissipative
solitons are generated, that correspond to pulses of 6 optical cycles and
constitute a coherent optical frequency comb in the spectral domain. Emission
of soliton induced Cherenkov radiation caused by higher order dispersion
broadens the spectral bandwidth to 2/3 of an octave, sufficient for self
referencing, in excellent agreement with recent theoretical predictions and the
broadest coherent microresonator frequency comb generated to date. In a further
step, this frequency comb is fully phase stabilized. The ability to preserve
coherence over a broad spectral bandwidth using soliton induced Cherenkov
radiation marks a critical milestone in the development of planar optical
frequency combs, enabling on one hand application in e.g. coherent
communications, broadband dual comb spectroscopy and Raman spectral imaging,
while on the other hand significantly relaxing dispersion requirements for
broadband microresonator frequency combs and providing a path for their
generation in the visible and UV. Our results underscore the utility and
effectiveness of planar microresonator frequency comb technology, that offers
the potential to make frequency metrology accessible beyond specialized
laboratories.Comment: Changes: - Added data (new Fig.4) on the first full phase
stabilization of a dissipative Kerr soliton (or dissipative cavity soliton)
in a microresonator - Extended Fig. 8 in the SI - Introduced nomenclature of
dissipative Kerr solitons - Minor other change
Reference pricing and cost-sharing: Theory and evidence on German off-patent drugs
This paper evaluates the impact of reference pricing on prices and co-payments in the (German) market for off-patent pharmaceuticals. We present a theoretical model with price-sensitive and loyal consumers that shows that a decrease in the reference price affects the consumers' co-payments in a non-monotonic way: For high reference prices, a marginally lower reference price may lead to lower co-payments. However, for low reference prices a further reduction may result into higher consumer co-payments. We use quarterly data on reference priced drugs covered by the social health insurance in Germany over the period 2007 - 2010 to analyze the empirical effects of reference price reductions. We find that, while prices decrease due to the reduction, co-payments behave non-monotonically and indeed increase if the reference price is sufficiently low
Octave Spanning Frequency Comb on a Chip
Optical frequency combs have revolutionized the field of frequency metrology
within the last decade and have become enabling tools for atomic clocks, gas
sensing and astrophysical spectrometer calibration. The rapidly increasing
number of applications has heightened interest in more compact comb generators.
Optical microresonator based comb generators bear promise in this regard.
Critical to their future use as 'frequency markers', is however the absolute
frequency stabilization of the optical comb spectrum. A powerful technique for
this stabilization is self-referencing, which requires a spectrum that spans a
full octave, i.e. a factor of two in frequency. In the case of mode locked
lasers, overcoming the limited bandwidth has become possible only with the
advent of photonic crystal fibres for supercontinuum generation. Here, we
report for the first time the generation of an octave-spanning frequency comb
directly from a toroidal microresonator on a silicon chip. The comb spectrum
covers the wavelength range from 990 nm to 2170 nm and is retrieved from a
continuous wave laser interacting with the modes of an ultra high Q
microresonator, without relying on external broadening. Full tunability of the
generated frequency comb over a bandwidth exceeding an entire free spectral
range is demonstrated. This allows positioning of a frequency comb mode to any
desired frequency within the comb bandwidth. The ability to derive octave
spanning spectra from microresonator comb generators represents a key step
towards achieving a radio-frequency to optical link on a chip, which could
unify the fields of metrology with micro- and nano-photonics and enable
entirely new devices that bring frequency metrology into a chip scale setting
for compact applications such as space based optical clocks
Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble
We demonstrate quantum control of a large spin-angular momentum associated
with the F=3 hyperfine ground state of 133Cs. A combination of time dependent
magnetic fields and a static tensor light shift is used to implement
near-optimal controls and map a fiducial state to a broad range of target
states, with yields in the range 0.8-0.9. Squeezed states are produced also by
an adiabatic scheme that is more robust against errors. Universal control
facilitates the encoding and manipulation of qubits and qudits in atomic ground
states, and may lead to improvement of some precision measurements.Comment: 4 pages, 4 figures (color
Coherent terabit communications with microresonator Kerr frequency combs
Optical frequency combs enable coherent data transmission on hundreds of
wavelength channels and have the potential to revolutionize terabit
communications. Generation of Kerr combs in nonlinear integrated microcavities
represents a particularly promising option enabling line spacings of tens of
GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr
combs may exhibit strong phase noise and multiplet spectral lines, and this has
made high-speed data transmission impossible up to now. Recent work has shown
that systematic adjustment of pump conditions enables low phase-noise Kerr
combs with singlet spectral lines. Here we demonstrate that Kerr combs are
suited for coherent data transmission with advanced modulation formats that
pose stringent requirements on the spectral purity of the optical source. In a
first experiment, we encode a data stream of 392 Gbit/s on subsequent lines of
a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature
amplitude modulation (16QAM). A second experiment shows feedback-stabilization
of a Kerr comb and transmission of a 1.44 Tbit/s data stream over a distance of
up to 300 km. The results demonstrate that Kerr combs can meet the highly
demanding requirements of multi-terabit/s coherent communications and thus
offer a solution towards chip-scale terabit/s transceivers
Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb
The quest for extrasolar planets and their characterisation as well as
studies of fundamental physics on cosmological scales rely on capabilities of
high-resolution astronomical spectroscopy. A central requirement is a precise
wavelength calibration of astronomical spectrographs allowing for extraction of
subtle wavelength shifts from the spectra of stars and quasars. Here, we
present an all-fibre, 400 nm wide near-infrared frequency comb based on
electro-optic modulation with 14.5 GHz comb line spacing. Tests on the
high-resolution, near-infrared spectrometer GIANO-B show a photon-noise limited
calibration precision of <10 cm/s as required for Earth-like planet detection.
Moreover, the presented comb provides detailed insight into particularities of
the spectrograph such as detector inhomogeneities and differential spectrograph
drifts. The system is validated in on-sky observations of a radial velocity
standard star (HD221354) and telluric atmospheric absorption features. The
advantages of the system include simplicity, robustness and turn-key operation,
features that are valuable at the observation sites
Biharmonic wave maps into spheres
A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed. The equation is reformulated as a conservation law and solved by a suitable Ginzburg-Landau type approximation
More cost-sharing, less cost? Evidence on reference price drugs
This paper evaluates the causal effects of changes in reference prices (RP) on prices, copayments, and overall expenditures for off-patent pharmaceuticals. With reference pricing, firms set prices freely and the health plan covers the expenses only up to a certain threshold. We use quarterly data of the German market for anti-epileptics at the package level and at the active substance level and exploit that the RP has been adjusted in some of the active substances but not in others in a difference-in-differences framework. At the product level, we find that a lower RP reduces prices for both brand-name drugs and generics, but leads to higher copayments, especially for brand-name drugs. At the aggregate level, we find that a lower RP leads to savings for the public health insurer since revenues decrease substantially for brand-name firms and, to a lesser extent, also for generic firms. Overall expenditures (payments by the health insurer and the patients) for brand-name drugs decrease in proportion to the decrease in the RP, while the adjustment does not significantly influence overall expenditures for generics
I-BEAT: New ultrasonic method for single bunch measurement of ion energy distribution
The shape of a wave carries all information about the spatial and temporal
structure of its source, given that the medium and its properties are known.
Most modern imaging methods seek to utilize this nature of waves originating
from Huygens' principle. We discuss the retrieval of the complete kinetic
energy distribution from the acoustic trace that is recorded when a short ion
bunch deposits its energy in water. This novel method, which we refer to as
Ion-Bunch Energy Acoustic Tracing (I-BEAT), is a generalization of the
ionoacoustic approach. Featuring compactness, simple operation,
indestructibility and high dynamic ranges in energy and intensity, I-BEAT is a
promising approach to meet the needs of petawatt-class laser-based ion
accelerators. With its capability of completely monitoring a single, focused
proton bunch with prompt readout it, is expected to have particular impact for
experiments and applications using ultrashort ion bunches in high flux regimes.
We demonstrate its functionality using it with two laser-driven ion sources for
quantitative determination of the kinetic energy distribution of single,
focused proton bunches.Comment: Paper: 17 Pages, 3 figures Supplementary Material 16 pages, 7 figure
- …
