1,842 research outputs found
A renormalization approach for the 2D Anderson model at the band edge: Scaling of the localization volume
We study the localization volumes (participation ratio) of electronic
wave functions in the 2d-Anderson model with diagonal disorder. Using a
renormalization procedure, we show that at the band edges, i.e. for energies
, is inversely proportional to the variance \var of the
site potentials. Using scaling arguments, we show that in the neighborhood of
, scales as V=\var^{-1}g((4-\ve E\ve)/\var) with the scaling
function . Numerical simulations confirm this scaling ansatz
Sufficient Conditions for Topological Order in Insulators
We prove the existence of low energy excitations in insulating systems at
general filling factor under certain conditions, and discuss in which cases
these may be identified as topological excitations. This proof is based on
previously proven locality results. In the case of half-filling it provides a
significantly shortened proof of the recent higher dimensional
Lieb-Schultz-Mattis theorem.Comment: 7 pages, no figure
Topological winding properties of spin edge states in Kane-Mele graphene model
We study the spin edge states in the quantum spin-Hall (QSH) effect on a
single-atomic layer graphene ribbon system with both intrinsic and Rashba
spin-orbit couplings. The Harper equation for solving the energies of the spin
edge states is derived. The results show that in the QSH phase, there are
always two pairs of gapless spin-filtered edge states in the bulk energy gap,
corresponding to two pairs of zero points of the Bloch function on the
complex-energy Riemann surface (RS). The topological aspect of the QSH phase
can be distinguished by the difference of the winding numbers of the spin edge
states with different polarized directions cross the holes of the RS, which is
equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys.
Rev. Lett. 95, 146802 (2005)].Comment: 9 pages, 10 figure
Ensemble Averaged Conductance Fluctuations in Anderson Localized Systems
We demonstrate the presence of energy dependent fluctuations in the
localization length, which depend on the disorder distribution. These
fluctuations lead to Ensemble Averaged Conductance Fluctuations (EACF) and are
enhanced by large disorder. For the binary distribution the fluctuations are
strongly enhanced in comparison to the Gaussian and uniform distributions.
These results have important implications on ensemble averaged quantities, such
as the transmission through quantum wires, where fluctuations can subsist to
very high temperatures. For the non-fluctuating part of the localization length
in one dimension we obtained an improved analytical expression valid for all
disorder strengths by averaging the probability density.Comment: 4 page
The Complexity of Vector Spin Glasses
We study the annealed complexity of the m-vector spin glasses in the
Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of
the Thouless-Anderson-Palmer (TAP) free energy is found to consist of a
continuous band of positive eigenvalues in addition to an isolated eigenvalue
and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly,
the band does not extend to zero at any finite temperature. The isolated
eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1),
indicating that the same supersymmetry breaking recently found in Ising spin
glasses occurs in vector spin glasses.Comment: 4 pages, 2 figure
Bosons in one-dimensional incommensurate superlattices
We investigate numerically the zero-temperature physics of the
one-dimensional Bose-Hubbard model in an incommensurate cosine potential,
recently realized in experiments with cold bosons in optical superlattices L.
Fallani et al., Phys. Rev. Lett. 98, 130404, (2007)]. An incommensurate cosine
potential has intermediate properties between a truly periodic and a fully
random potential, displaying a characteristic length scale (the quasi-period)
which is shown to set a finite lower bound to the excitation energy of the
system at special incommensurate fillings. This leads to the emergence of
gapped incommensurate band-insulator (IBI) phases along with gapless Bose-glass
(BG) phases for strong quasi-periodic potential, both for hardcore and softcore
bosons. Enriching the spatial features of the potential by the addition of a
second incommensurate component appears to remove the IBI regions, stabilizing
a continuous BG phase over an extended parameter range. Moreover we discuss the
validity of the local-density approximation in presence of a parabolic trap,
clarifying the notion of a local BG phase in a trapped system; we investigate
the behavior of first- and second-order coherence upon increasing the strength
of the quasi-periodic potential; and we discuss the ab-initio derivation of the
Bose-Hubbard Hamiltonian with quasi-periodic potential starting from the
microscopic Hamiltonian of bosons in an incommensurate superlattice.Comment: 22 pages, 28 figure
The geometrically-averaged density of states as a measure of localization
Motivated by current interest in disordered systems of interacting electrons,
the effectiveness of the geometrically averaged density of states,
, as an order parameter for the Anderson transition is
examined. In the context of finite-size systems we examine complications which
arise from finite energy resolution. Furthermore we demonstrate that even in
infinite systems a decline in with increasing disorder
strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure
Structure of Stochastic Dynamics near Fixed Points
We analyze the structure of stochastic dynamics near either a stable or
unstable fixed point, where force can be approximated by linearization. We find
that a cost function that determines a Boltzmann-like stationary distribution
can always be defined near it. Such a stationary distribution does not need to
satisfy the usual detailed balance condition, but might have instead a
divergence-free probability current. In the linear case the force can be split
into two parts, one of which gives detailed balance with the diffusive motion,
while the other induces cyclic motion on surfaces of constant cost function.
Using the Jordan transformation for the force matrix, we find an explicit
construction of the cost function. We discuss singularities of the
transformation and their consequences for the stationary distribution. This
Boltzmann-like distribution may be not unique, and nonlinear effects and
boundary conditions may change the distribution and induce additional currents
even in the neighborhood of a fixed point.Comment: 7 page
- …
