1,842 research outputs found

    A renormalization approach for the 2D Anderson model at the band edge: Scaling of the localization volume

    Full text link
    We study the localization volumes VV (participation ratio) of electronic wave functions in the 2d-Anderson model with diagonal disorder. Using a renormalization procedure, we show that at the band edges, i.e. for energies E±4E\approx \pm 4, VV is inversely proportional to the variance \var of the site potentials. Using scaling arguments, we show that in the neighborhood of E=±4E=\pm 4, VV scales as V=\var^{-1}g((4-\ve E\ve)/\var) with the scaling function g(x)g(x). Numerical simulations confirm this scaling ansatz

    Sufficient Conditions for Topological Order in Insulators

    Full text link
    We prove the existence of low energy excitations in insulating systems at general filling factor under certain conditions, and discuss in which cases these may be identified as topological excitations. This proof is based on previously proven locality results. In the case of half-filling it provides a significantly shortened proof of the recent higher dimensional Lieb-Schultz-Mattis theorem.Comment: 7 pages, no figure

    Topological winding properties of spin edge states in Kane-Mele graphene model

    Full text link
    We study the spin edge states in the quantum spin-Hall (QSH) effect on a single-atomic layer graphene ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the Bloch function on the complex-energy Riemann surface (RS). The topological aspect of the QSH phase can be distinguished by the difference of the winding numbers of the spin edge states with different polarized directions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys. Rev. Lett. 95, 146802 (2005)].Comment: 9 pages, 10 figure

    Ensemble Averaged Conductance Fluctuations in Anderson Localized Systems

    Full text link
    We demonstrate the presence of energy dependent fluctuations in the localization length, which depend on the disorder distribution. These fluctuations lead to Ensemble Averaged Conductance Fluctuations (EACF) and are enhanced by large disorder. For the binary distribution the fluctuations are strongly enhanced in comparison to the Gaussian and uniform distributions. These results have important implications on ensemble averaged quantities, such as the transmission through quantum wires, where fluctuations can subsist to very high temperatures. For the non-fluctuating part of the localization length in one dimension we obtained an improved analytical expression valid for all disorder strengths by averaging the probability density.Comment: 4 page

    The Complexity of Vector Spin Glasses

    Full text link
    We study the annealed complexity of the m-vector spin glasses in the Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of the Thouless-Anderson-Palmer (TAP) free energy is found to consist of a continuous band of positive eigenvalues in addition to an isolated eigenvalue and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly, the band does not extend to zero at any finite temperature. The isolated eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1), indicating that the same supersymmetry breaking recently found in Ising spin glasses occurs in vector spin glasses.Comment: 4 pages, 2 figure

    Bosons in one-dimensional incommensurate superlattices

    Full text link
    We investigate numerically the zero-temperature physics of the one-dimensional Bose-Hubbard model in an incommensurate cosine potential, recently realized in experiments with cold bosons in optical superlattices L. Fallani et al., Phys. Rev. Lett. 98, 130404, (2007)]. An incommensurate cosine potential has intermediate properties between a truly periodic and a fully random potential, displaying a characteristic length scale (the quasi-period) which is shown to set a finite lower bound to the excitation energy of the system at special incommensurate fillings. This leads to the emergence of gapped incommensurate band-insulator (IBI) phases along with gapless Bose-glass (BG) phases for strong quasi-periodic potential, both for hardcore and softcore bosons. Enriching the spatial features of the potential by the addition of a second incommensurate component appears to remove the IBI regions, stabilizing a continuous BG phase over an extended parameter range. Moreover we discuss the validity of the local-density approximation in presence of a parabolic trap, clarifying the notion of a local BG phase in a trapped system; we investigate the behavior of first- and second-order coherence upon increasing the strength of the quasi-periodic potential; and we discuss the ab-initio derivation of the Bose-Hubbard Hamiltonian with quasi-periodic potential starting from the microscopic Hamiltonian of bosons in an incommensurate superlattice.Comment: 22 pages, 28 figure

    The geometrically-averaged density of states as a measure of localization

    Full text link
    Motivated by current interest in disordered systems of interacting electrons, the effectiveness of the geometrically averaged density of states, ρg(ω)\rho_g(\omega), as an order parameter for the Anderson transition is examined. In the context of finite-size systems we examine complications which arise from finite energy resolution. Furthermore we demonstrate that even in infinite systems a decline in ρg(ω)\rho_g(\omega) with increasing disorder strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure

    Structure of Stochastic Dynamics near Fixed Points

    Full text link
    We analyze the structure of stochastic dynamics near either a stable or unstable fixed point, where force can be approximated by linearization. We find that a cost function that determines a Boltzmann-like stationary distribution can always be defined near it. Such a stationary distribution does not need to satisfy the usual detailed balance condition, but might have instead a divergence-free probability current. In the linear case the force can be split into two parts, one of which gives detailed balance with the diffusive motion, while the other induces cyclic motion on surfaces of constant cost function. Using the Jordan transformation for the force matrix, we find an explicit construction of the cost function. We discuss singularities of the transformation and their consequences for the stationary distribution. This Boltzmann-like distribution may be not unique, and nonlinear effects and boundary conditions may change the distribution and induce additional currents even in the neighborhood of a fixed point.Comment: 7 page
    corecore