3 research outputs found
Hitting Sets for Orbits of Circuit Classes and Polynomial Families
The orbit of an n-variate polynomial f(?) over a field ? is the set {f(A?+?) : A ? GL(n,?) and ? ? ??}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials computable by several natural and well-studied circuit classes and polynomial families. In particular, we give quasi-polynomial time hitting sets for the orbits of:
1) Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials.
2) Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial time hitting set for the orbits of the family {IMM_{3,d}}_{d ? ?}, which is complete for arithmetic formulas.
3) Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the sum-product polynomials.
4) Polynomials computable by occur-once formulas