628 research outputs found

    Two Structural Results for Low Degree Polynomials and Applications

    Get PDF
    In this paper, two structural results concerning low degree polynomials over finite fields are given. The first states that over any finite field F\mathbb{F}, for any polynomial ff on nn variables with degree dlog(n)/10d \le \log(n)/10, there exists a subspace of Fn\mathbb{F}^n with dimension Ω(dn1/(d1))\Omega(d \cdot n^{1/(d-1)}) on which ff is constant. This result is shown to be tight. Stated differently, a degree dd polynomial cannot compute an affine disperser for dimension smaller than Ω(dn1/(d1))\Omega(d \cdot n^{1/(d-1)}). Using a recursive argument, we obtain our second structural result, showing that any degree dd polynomial ff induces a partition of FnF^n to affine subspaces of dimension Ω(n1/(d1)!)\Omega(n^{1/(d-1)!}), such that ff is constant on each part. We extend both structural results to more than one polynomial. We further prove an analog of the first structural result to sparse polynomials (with no restriction on the degree) and to functions that are close to low degree polynomials. We also consider the algorithmic aspect of the two structural results. Our structural results have various applications, two of which are: * Dvir [CC 2012] introduced the notion of extractors for varieties, and gave explicit constructions of such extractors over large fields. We show that over any finite field, any affine extractor is also an extractor for varieties with related parameters. Our reduction also holds for dispersers, and we conclude that Shaltiel's affine disperser [FOCS 2011] is a disperser for varieties over F2F_2. * Ben-Sasson and Kopparty [SIAM J. C 2012] proved that any degree 3 affine disperser over a prime field is also an affine extractor with related parameters. Using our structural results, and based on the work of Kaufman and Lovett [FOCS 2008] and Haramaty and Shpilka [STOC 2010], we generalize this result to any constant degree

    Quantum Advantage without Entanglement

    Full text link
    We study the advantage of pure-state quantum computation without entanglement over classical computation. For the Deutsch-Jozsa algorithm we present the maximal subproblem that can be solved without entanglement, and show that the algorithm still has an advantage over the classical ones. We further show that this subproblem is of greater significance, by proving that it contains all the Boolean functions whose quantum phase-oracle is non-entangling. For Simon's and Grover's algorithms we provide simple proofs that no non-trivial subproblems can be solved by these algorithms without entanglement.Comment: 10 page

    Rate Amplification and Query-Efficient Distance Amplification for Linear LCC and LDC

    Get PDF
    The main contribution of this work is a rate amplification procedure for LCC. Our procedure converts any q-query linear LCC, having rate ? and, say, constant distance to an asymptotically good LCC with q^poly(1/?) queries. Our second contribution is a distance amplification procedure for LDC that converts any linear LDC with distance ? and, say, constant rate to an asymptotically good LDC. The query complexity only suffers a multiplicative overhead that is roughly equal to the query complexity of a length 1/? asymptotically good LDC. This improves upon the poly(1/?) overhead obtained by the AEL distance amplification procedure [Alon and Luby, 1996; Alon et al., 1995]. Our work establishes that the construction of asymptotically good LDC and LCC is reduced, with a minor overhead in query complexity, to the problem of constructing a vanishing rate linear LCC and a (rapidly) vanishing distance linear LDC, respectively

    Transduplication resulted in the incorporation of two protein-coding sequences into the Turmoil-1 transposable element of C. elegans

    Get PDF
    Transposable elements may acquire unrelated gene fragments into their sequences in a process called transduplication. Transduplication of protein-coding genes is common in plants, but is unknown of in animals. Here, we report that the Turmoil-1 transposable element in C. elegans has incorporated two protein-coding sequences into its inverted terminal repeat (ITR) sequences. The ITRs of Turmoil-1 contain a conserved RNA recognition motif (RRM) that originated from the rsp- 2 gene and a fragment from the protein-coding region of the cpg-3 gene. We further report that an open reading frame specific to C. elegans may have been created as a result of a Turmoil-1 insertion. Mutations at the 5' splice site of this open reading frame may have reactivated the transduplicated RRM moti
    corecore