64 research outputs found

    Multiuser Diversity Gain in Cognitive Networks

    Full text link
    Dynamic allocation of resources to the \emph{best} link in large multiuser networks offers considerable improvement in spectral efficiency. This gain, often referred to as \emph{multiuser diversity gain}, can be cast as double-logarithmic growth of the network throughput with the number of users. In this paper we consider large cognitive networks granted concurrent spectrum access with license-holding users. The primary network affords to share its under-utilized spectrum bands with the secondary users. We assess the optimal multiuser diversity gain in the cognitive networks by quantifying how the sum-rate throughput of the network scales with the number of secondary users. For this purpose we look at the optimal pairing of spectrum bands and secondary users, which is supervised by a central entity fully aware of the instantaneous channel conditions, and show that the throughput of the cognitive network scales double-logarithmically with the number of secondary users (NN) and linearly with the number of available spectrum bands (MM), i.e., MloglogNM\log\log N. We then propose a \emph{distributed} spectrum allocation scheme, which does not necessitate a central controller or any information exchange between different secondary users and still obeys the optimal throughput scaling law. This scheme requires that \emph{some} secondary transmitter-receiver pairs exchange logM\log M information bits among themselves. We also show that the aggregate amount of information exchange between secondary transmitter-receiver pairs is {\em asymptotically} equal to MlogMM\log M. Finally, we show that our distributed scheme guarantees fairness among the secondary users, meaning that they are equally likely to get access to an available spectrum band.Comment: 32 pages, 3 figures, to appear in the IEEE/ACM Transactions on Networkin

    Beacon-Assisted Spectrum Access with Cooperative Cognitive Transmitter and Receiver

    Full text link
    Spectrum access is an important function of cognitive radios for detecting and utilizing spectrum holes without interfering with the legacy systems. In this paper we propose novel cooperative communication models and show how deploying such cooperations between a pair of secondary transmitter and receiver assists them in identifying spectrum opportunities more reliably. These cooperations are facilitated by dynamically and opportunistically assigning one of the secondary users as a relay to assist the other one which results in more efficient spectrum hole detection. Also, we investigate the impact of erroneous detection of spectrum holes and thereof missing communication opportunities on the capacity of the secondary channel. The capacity of the secondary users with interference-avoiding spectrum access is affected by 1) how effectively the availability of vacant spectrum is sensed by the secondary transmitter-receiver pair, and 2) how correlated are the perceptions of the secondary transmitter-receiver pair about network spectral activity. We show that both factors are improved by using the proposed cooperative protocols. One of the proposed protocols requires explicit information exchange in the network. Such information exchange in practice is prone to wireless channel errors (i.e., is imperfect) and costs bandwidth loss. We analyze the effects of such imperfect information exchange on the capacity as well as the effect of bandwidth cost on the achievable throughput. The protocols are also extended to multiuser secondary networks.Comment: 36 pages, 6 figures, To appear in IEEE Transaction on Mobile Computin

    Information Exchange Limits in Cooperative MIMO Networks

    Full text link
    Concurrent presence of inter-cell and intra-cell interferences constitutes a major impediment to reliable downlink transmission in multi-cell multiuser networks. Harnessing such interferences largely hinges on two levels of information exchange in the network: one from the users to the base-stations (feedback) and the other one among the base-stations (cooperation). We demonstrate that exchanging a finite number of bits across the network, in the form of feedback and cooperation, is adequate for achieving the optimal capacity scaling. We also show that the average level of information exchange is independent of the number of users in the network. This level of information exchange is considerably less than that required by the existing coordination strategies which necessitate exchanging infinite bits across the network for achieving the optimal sum-rate capacity scaling. The results provided rely on a constructive proof.Comment: 35 pages, 5 figur

    Quick Search for Rare Events

    Full text link
    Rare events can potentially occur in many applications. When manifested as opportunities to be exploited, risks to be ameliorated, or certain features to be extracted, such events become of paramount significance. Due to their sporadic nature, the information-bearing signals associated with rare events often lie in a large set of irrelevant signals and are not easily accessible. This paper provides a statistical framework for detecting such events so that an optimal balance between detection reliability and agility, as two opposing performance measures, is established. The core component of this framework is a sampling procedure that adaptively and quickly focuses the information-gathering resources on the segments of the dataset that bear the information pertinent to the rare events. Particular focus is placed on Gaussian signals with the aim of detecting signals with rare mean and variance values

    Beamforming and Rate Allocation in MISO Cognitive Radio Networks

    Full text link
    We consider decentralized multi-antenna cognitive radio networks where secondary (cognitive) users are granted simultaneous spectrum access along with license-holding (primary) users. We treat the problem of distributed beamforming and rate allocation for the secondary users such that the minimum weighted secondary rate is maximized. Such an optimization is subject to (1) a limited weighted sum-power budget for the secondary users and (2) guaranteed protection for the primary users in the sense that the interference level imposed on each primary receiver does not exceed a specified level. Based on the decoding method deployed by the secondary receivers, we consider three scenarios for solving this problem. In the first scenario each secondary receiver decodes only its designated transmitter while suppressing the rest as Gaussian interferers (single-user decoding). In the second case each secondary receiver employs the maximum likelihood decoder (MLD) to jointly decode all secondary transmissions, and in the third one each secondary receiver uses the unconstrained group decoder (UGD). By deploying the UGD, each secondary user is allowed to decode any arbitrary subset of users (which contains its designated user) after suppressing or canceling the remaining users.Comment: 32 pages, 6 figure
    corecore