151 research outputs found
Formulas for ASEP with Two-Sided Bernoulli Initial Condition
For the asymmetric simple exclusion process on the integer lattice with
two-sided Bernoulli initial condition, we derive exact formulas for the
following quantities: (1) the probability that site x is occupied at time t;
(2) a correlation function, the probability that site 0 is occupied at time 0
and site x is occupied at time t; (3) the distribution function for the total
flux across 0 at time t and its exponential generating function.Comment: 18 page
A Fredholm Determinant Representation in ASEP
In previous work the authors found integral formulas for probabilities in the
asymmetric simple exclusion process (ASEP) on the integer lattice. The dynamics
are uniquely determined once the initial state is specified. In this note we
restrict our attention to the case of step initial condition with particles at
the positive integers, and consider the distribution function for the m'th
particle from the left. In the previous work an infinite series of multiple
integrals was derived for this distribution. In this note we show that the
series can be summed to give a single integral whose integrand involves a
Fredholm determinant. We use this determinant representation to derive
(non-rigorously, at this writing) a scaling limit.Comment: 12 Pages. Version 3 includes a scaling conjectur
On a property of random-oriented percolation in a quadrant
Grimmett's random-orientation percolation is formulated as follows. The
square lattice is used to generate an oriented graph such that each edge is
oriented rightwards (resp. upwards) with probability and leftwards (resp.
downwards) otherwise. We consider a variation of Grimmett's model proposed by
Hegarty, in which edges are oriented away from the origin with probability ,
and towards it with probability , which implies rotational instead of
translational symmetry. We show that both models could be considered as special
cases of random-oriented percolation in the NE-quadrant, provided that the
critical value for the latter is 1/2. As a corollary, we unconditionally obtain
a non-trivial lower bound for the critical value of Hegarty's
random-orientation model. The second part of the paper is devoted to higher
dimensions and we show that the Grimmett model percolates in any slab of height
at least 3 in .Comment: The abstract has been updated, discussion has been added to the end
of the articl
Semi-infinite TASEP with a Complex Boundary Mechanism
We consider a totally asymmetric exclusion process on the positive half-line.
When particles enter in the system according to a Poisson source, Liggett has
computed all the limit distributions when the initial distribution has an
asymptotic density. In this paper we consider systems for which particles enter
at the boundary according to a complex mechanism depending on the current
configuration in a finite neighborhood of the origin. For this kind of models,
we prove a strong law of large numbers for the number of particles entered in
the system at a given time. Our main tool is a new representation of the model
as a multi-type particle system with infinitely many particle types
Multilayer parking with screening on a random tree
In this paper we present a multilayer particle deposition model on a random
tree. We derive the time dependent densities of the first and second layer
analytically and show that in all trees the limiting density of the first layer
exceeds the density in the second layer. We also provide a procedure to
calculate higher layer densities and prove that random trees have a higher
limiting density in the first layer than regular trees. Finally, we compare
densities between the first and second layer and between regular and random
trees.Comment: 15 pages, 2 figure
Non equilibrium stationary state for the SEP with births and deaths
We consider the symmetric simple exclusion process in the interval
\La_N:=[-N,N]\cap\mathbb Z with births and deaths taking place respectively
on suitable boundary intervals and , as introduced in De Masi et al.
(J. Stat. Phys. 2011). We study the stationary measure density profile in the
limit $N\to\infty
A second row Parking Paradox
We consider two variations of the discrete car parking problem where at every
vertex of the integers a car arrives with rate one, now allowing for parking in
two lines. a) The car parks in the first line whenever the vertex and all of
its nearest neighbors are not occupied yet. It can reach the first line if it
is not obstructed by cars already parked in the second line (screening). b) The
car parks according to the same rules, but parking in the first line can not be
obstructed by parked cars in the second line (no screening). In both models, a
car that can not park in the first line will attempt to park in the second
line. If it is obstructed in the second line as well, the attempt is discarded.
We show that both models are solvable in terms of finite-dimensional ODEs. We
compare numerically the limits of first and second line densities, with time
going to infinity. While it is not surprising that model a) exhibits an
increase of the density in the second line from the first line, more remarkably
this is also true for model b), albeit in a less pronounced way.Comment: 11 pages, 4 figure
Markov evolutions and hierarchical equations in the continuum I. One-component systems
General birth-and-death as well as hopping stochastic dynamics of infinite
particle systems in the continuum are considered. We derive corresponding
evolution equations for correlation functions and generating functionals.
General considerations are illustrated in a number of concrete examples of
Markov evolutions appearing in applications.Comment: 47 page
Hyperscaling in the Domany-Kinzel Cellular Automaton
An apparent violation of hyperscaling at the endpoint of the critical line in
the Domany-Kinzel stochastic cellular automaton finds an elementary resolution
upon noting that the order parameter is discontinuous at this point. We derive
a hyperscaling relation for such transitions and discuss applications to
related examples.Comment: 8 pages, latex, no figure
On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries
We investigate the structure of the nonequilibrium stationary state (NESS) of
a system of first and second class particles, as well as vacancies (holes), on
L sites of a one-dimensional lattice in contact with first class particle
reservoirs at the boundary sites; these particles can enter at site 1, when it
is vacant, with rate alpha, and exit from site L with rate beta. Second class
particles can neither enter nor leave the system, so the boundaries are
semi-permeable. The internal dynamics are described by the usual totally
asymmetric exclusion process (TASEP) with second class particles. An exact
solution of the NESS was found by Arita. Here we describe two consequences of
the fact that the flux of second class particles is zero. First, there exist
(pinned and unpinned) fat shocks which determine the general structure of the
phase diagram and of the local measures; the latter describe the microscopic
structure of the system at different macroscopic points (in the limit L going
to infinity in terms of superpositions of extremal measures of the infinite
system. Second, the distribution of second class particles is given by an
equilibrium ensemble in fixed volume, or equivalently but more simply by a
pressure ensemble, in which the pair potential between neighboring particles
grows logarithmically with distance. We also point out an unexpected feature in
the microscopic structure of the NESS for finite L: if there are n second class
particles in the system then the distribution of first class particles
(respectively holes) on the first (respectively last) n sites is exchangeable.Comment: 28 pages, 4 figures. Changed title and introduction for clarity,
added reference
- …
