49 research outputs found

### Cyclical Quantum Memory for Photonic Qubits

We have performed a proof-of-principle experiment in which qubits encoded in
the polarization states of single-photons from a parametric down-conversion
source were coherently stored and read-out from a quantum memory device. The
memory device utilized a simple free-space storage loop, providing a cyclical
read-out that could be synchronized with the cycle time of a quantum computer.
The coherence of the photonic qubits was maintained during switching operations
by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure

### Experimental Controlled-NOT Logic Gate for Single Photons in the Coincidence Basis

We report a proof-of-principle demonstration of a probabilistic
controlled-NOT gate for single photons. Single-photon control and target qubits
were mixed with a single ancilla photon in a device constructed using only
linear optical elements. The successful operation of the controlled-NOT gate
relied on post-selected three-photon interference effects which required the
detection of the photons in the output modes.Comment: 4 pages, 4 figures; minor change

### Heralding Single Photons from Pulsed Parametric Down-Conversion

We describe an experiment in which photon pairs from a pulsed parametric
down-conversion source were coupled into single-mode fibers. Detecting one of
the photons heralded the presence of the other photon in its fiber with a
probability of 83%. The heralded photons were then used in a simple
multi-photon interference experiment to illustrate their potential for quantum
information applications.Comment: 4 pages, 7 figures. Version 2 has minor revision

### Photon number resolution using a time-multiplexed single-photon detector

Photon number resolving detectors are needed for a variety of applications
including linear-optics quantum computing. Here we describe the use of
time-multiplexing techniques that allows ordinary single photon detectors, such
as silicon avalanche photodiodes, to be used as photon number-resolving
detectors. The ability of such a detector to correctly measure the number of
photons for an incident number state is analyzed. The predicted results for an
incident coherent state are found to be in good agreement with the results of a
proof-of-principle experimental demonstration.Comment: REVTeX4, 6 pages, 8 eps figures, v2: minor changes, v3: changes in
response to referee report, appendix added, 1 reference adde

### Conditional linear-optical measurement schemes generate effective photon nonlinearities

We provide a general approach for the analysis of optical state evolution
under conditional measurement schemes, and identify the necessary and
sufficient conditions for such schemes to simulate unitary evolution on the
freely propagating modes. If such unitary evolution holds, an effective photon
nonlinearity can be identified. Our analysis extends to conditional measurement
schemes more general than those based solely on linear optics.Comment: 16 pages, 2 figure

### Comparison of LOQC C-sign gates with ancilla inefficiency and an improvement to functionality under these conditions

We compare three proposals for non-deterministic C-sign gates implemented
using linear optics and conditional measurements with non-ideal ancilla mode
production and detection. The simplified KLM gate [Ralph et al, Phys.Rev.A {\bf
65}, 012314 (2001)] appears to be the most resilient under these conditions. We
also find that the operation of this gate can be improved by adjusting the
beamsplitter ratios to compensate to some extent for the effects of the
imperfect ancilla.Comment: to appear in PR

### Demonstration of Feed-Forward Control for Linear Optics Quantum Computation

One of the main requirements in linear optics quantum computing is the
ability to perform single-qubit operations that are controlled by classical
information fed forward from the output of single photon detectors. These
operations correspond to pre-determined combinations of phase corrections and
bit-flips that are applied to the post-selected output modes of
non-deterministic quantum logic devices. Corrections of this kind are required
in order to obtain the correct logical output for certain detection events, and
their use can increase the overall success probability of the devices. In this
paper, we report on the experimental demonstration of the use of this type of
feed-forward system to increase the probability of success of a simple
non-deterministic quantum logic operation from approximately 1/4 to 1/2. This
logic operation involves the use of one target qubit and one ancilla qubit
which, in this experiment, are derived from a parametric down-conversion photon
pair. Classical information describing the detection of the ancilla photon is
fed-forward in real-time and used to alter the quantum state of the output
photon. A fiber optic delay line is used to store the output photon until a
polarization-dependent phase shift can be applied using a high speed Pockels
cell

### Imperfect Detectors in Linear Optical Quantum Computers

We discuss the effects of imperfect photon detectors suffering from loss and
noise on the reliability of linear optical quantum computers. We show that for
a given detector efficiency, there is a maximum achievable success probability,
and that increasing the number of ancillary photons and detectors used for one
controlled sign flip gate beyond a critical point will decrease the probability
that the computer will function correctly. We have also performed simulations
of some small logic gates and estimate the efficiency and noise levels required
for the linear optical quantum computer to function properly.Comment: 13 pages, 5 figure

### Quantum error rejection code with spontaneous parametric conversion

We propose a linear optics scheme with SPDC process to test the fault
tolerance property of quantum error correction code. To transmit an unknown
qubit robustly through the noisy channel, one may first encode it into a
certain quantum error correction code and then transmit it. The remote party
decodes it and stores it. Sending a qubit in such a way can significantly
reduces the error rate compared with directly sending the qubit itself. Here we
show how to realize such a scheme by linear optics.Comment: To appear in Phys. Rev. A. 18 pages, 2 figure, minor erros corrected
and more explanations added to increase the readabilit

### Conditional generation of arbitrary multimode entangled states of light with linear optics

We propose a universal scheme for the probabilistic generation of an
arbitrary multimode entangled state of light with finite expansion in Fock
basis. The suggested setup involves passive linear optics, single photon
sources, strong coherent laser beams, and photodetectors with single-photon
resolution. The efficiency of this setup may be greatly enhanced if, in
addition, a quantum memory is available.Comment: 7 pages, 5 figure