64,195 research outputs found

    Investigation of environmental change pattern in Japan. Classification of shorelines

    Get PDF
    There are no author-identified significant results in this report

    Investigation of environmental change pattern in Japan. Utilization of LANDSAT-2 data for fisheries

    Get PDF
    The author has identified the following significant results. MSS data provided extensive and simultaneous information about marine environmental conditions, such as the shift of the Kuroshio, fall and rise of coastal water mass, distribution of water masses, locations of vortex and current rips, exchanges of water between embayment and open ocean effluent rivers, fertility of plankton, red tide, pollution, etc

    A Maximum Mass-to-Size Ratio in Scalar-Tensor Theories of Gravity

    Full text link
    We derive a modified Buchdahl inequality for scalar-tensor theories of gravity. In general relativity, Buchdahl has shown that the maximum value of the mass-to-size ratio, 2M/R2M/R, is 8/9 for static and spherically symmetric stars under some physically reasonable assumptions. We formally apply Buchdahl's method to scalar-tensor theories and obtain theory-independent inequalities. After discussing the mass definition in scalar-tensor theories, these inequalities are related to a theory-dependent maximum mass-to-size ratio. We show that its value can exceed not only Buchdahl's limit, 8/9, but also unity, which we call {\it the black hole limit}, in contrast to general relativity. Next, we numerically examine the validity of the assumptions made in deriving the inequalities and the applicability of our analytic results. We find that the assumptions are mostly satisfied and that the mass-to-size ratio exceeds both Buchdahl's limit and the black hole limit. However, we also find that this ratio never exceeds Buchdahl's limit when we impose the further condition, ρ3p0\rho-3p\ge0, on the density, ρ\rho, and pressure, pp, of the matter.Comment: 23 pages, 13 figures and 1 tabl

    An infrared measurement of chemical desorption from interstellar ice analogues

    Get PDF
    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical net- work models commonly include this process. Although there have been a few previous experimental efforts, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S -> HS + H2 (reaction 1) and HS + H -> H2S (reaction 2), which are key to interstellar sulphur chemistry. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments

    Motion of the Tippe Top : Gyroscopic Balance Condition and Stability

    Full text link
    We reexamine a very classical problem, the spinning behavior of the tippe top on a horizontal table. The analysis is made for an eccentric sphere version of the tippe top, assuming a modified Coulomb law for the sliding friction, which is a continuous function of the slip velocity vP\vec v_P at the point of contact and vanishes at vP=0\vec v_P=0. We study the relevance of the gyroscopic balance condition (GBC), which was discovered to hold for a rapidly spinning hard-boiled egg by Moffatt and Shimomura, to the inversion phenomenon of the tippe top. We introduce a variable ξ\xi so that ξ=0\xi=0 corresponds to the GBC and analyze the behavior of ξ\xi. Contrary to the case of the spinning egg, the GBC for the tippe top is not fulfilled initially. But we find from simulation that for those tippe tops which will turn over, the GBC will soon be satisfied approximately. It is shown that the GBC and the geometry lead to the classification of tippe tops into three groups: The tippe tops of Group I never flip over however large a spin they are given. Those of Group II show a complete inversion and the tippe tops of Group III tend to turn over up to a certain inclination angle θf\theta_f such that θf<π\theta_f<\pi, when they are spun sufficiently rapidly. There exist three steady states for the spinning motion of the tippe top. Giving a new criterion for stability, we examine the stability of these states in terms of the initial spin velocity n0n_0. And we obtain a critical value ncn_c of the initial spin which is required for the tippe top of Group II to flip over up to the completely inverted position.Comment: 52 pages, 11 figures, to be published in SIAM Journal on Applied Dynamical Syste
    corecore