17 research outputs found
Effect of asphericity in caustic mass estimates of galaxy clusters
The caustic technique for measuring mass profiles of galaxy clusters relies
on the assumption of spherical symmetry. When applied to aspherical galaxy
clusters, the method yields mass estimates affected by the cluster orientation.
Here we employ mock redshift catalogues generated from cosmological simulations
to study the effect of clusters intrinsic shape and surrounding filamentary
structures on the caustic mass estimates. To this end, we develop a new method
for removing perturbations from large-scale structures, modelled as the
two-halo term, in a caustic analysis of stacked cluster data.
We find that the cluster masses inferred from kinematical data of ~10^14 Msun
clusters observed along the major axis are larger than masses from those
observed along the minor axis by a factor of 1.7 within the virial radius,
increasing to 1.8 within three virial radii. This discrepancy increases by 20%
for the most massive clusters. In addition a smaller but still significant mass
discrepancy arises when filamentary structures are present near a galaxy
cluster.
We find that the mean cluster mass from random sightlines is unbiased at all
radii and their scatter ranges from 0.14 to 0.17 within one and three virial
radii, with a 40% increase for the most massive clusters. We provide tables
which estimate the caustic mass bias given observational constraints on the
cluster orientation.Comment: 19 pages, 9 figures, 6 tables, accepted for publication in MNRA
The Ion and Charged Aerosol Growth Enhancement (ION-CAGE) code: A numerical model for the growth of charged and neutral aerosols
The presence of small ions influences the growth dynamics of a size
distribution of aerosols. Specifically the often neglected mass of small ions
influences the aerosol growth rate, which may be important for terrestrial
cloud formation. To this end, we develop a numerical model to calculate the
growth of a species of aerosols in the presence of charge, which explicitly
includes terms for ion-condensation. It is shown that a positive contribution
to aerosol growth rate is obtained by increasing the ion-pair concentration
through this effect, consistent with recent experimental findings. The
ion-condensation effect is then compared to aerosol growth from charged aerosol
coagulation, which is seen to be independent of ion-pair concentration. The
model source code is made available through a public repository.Comment: 29 pages, 12 figure
Supersaturation and Critical Size of Cloud Condensation Nuclei in Marine Stratus Clouds
Observations of marine stratus clouds in clean air off the Californian coast reveal a functional relationship between the number of cloud condensation nuclei (CCN) and supersaturation. Satellite‐derived liquid droplet density estimates the number density of CCN. Combining the estimated supersaturation using Köhler theory, global maps of supersaturation and the critical activation size of CCN are estimated. Here, we show that high supersaturation >0.5% persists over the oceans with a critical CCN size of 25–30 nm, which is smaller than the conventional wisdom of 60 nm. Independent support for such high supersaturation in the marine cloud is obtained from CCN measurements provided by the “Atmospheric Tomography Mission.” Higher supersaturation implies smaller activation size for CCN making cloud formation more sensitive to changes in aerosol nucleation
Measurement of the charging state of 4-70 nm aerosols
The charging state of aerosols in an 8 m3 reaction chamber was measured using an electrostatic classifier with a condensation particle counter at different levels of ionization in the chamber. By replacing the Kr-85 neutralizer in the classifier with a radioactively neutral dummy we were able to measure only the aerosols that were charged inside our reaction chamber. These measurements were then compared with measurements using the neutralizer to get the charging state of the aerosols, which refers to the charged fraction of the aerosols compared to an equilibrium charge distribution. Charging states were measured for both positively and negatively charged aerosols while the ionization in the chamber was varied using external gamma sources. We find that the negatively charged aerosols were overcharged (relative to the equilibrium) by up to about a factor of 10 below 10 nm and at 16±2% from 10 to 70 nm. At higher levels of radiation on the chamber the smaller aerosols were less overcharged while the large aerosols were more overcharged (23±2%). For the positively charged aerosols only the smallest aerosols were overcharged while those over 10 nm were undercharged (relative to the equilibrium) by 21±3%. Increasing the radiation on the chamber increased the undercharge above 10 nm to 25±2% while the overcharge below 10 nm disappeared. The split between positive and negative charges above 10 nm can be explained by differences in mobility of small negative and positive ions. The overcharge below 10 nm can be explained by ions participating in the formation of aerosols of both signs, while the reduction in this overcharge at higher levels of ionization may be explained by faster recombination
Atmospheric ionization and cloud radiative forcing
Atmospheric ionization produced by cosmic rays has been suspected to influence aerosols and clouds, but its actual importance has been questioned. If changes in atmospheric ionization have a substantial impact on clouds, one would expect to observe significant responses in Earth’s energy budget. Here it is shown that the average of the five strongest week-long decreases in atmospheric ionization coincides with changes in the average net radiative balance of 1.7 W/m[Formula: see text] (median value: 1.2 W/m[Formula: see text] ) using CERES satellite observations. Simultaneous satellite observations of clouds show that these variations are mainly caused by changes in the short-wave radiation of low liquid clouds along with small changes in the long-wave radiation, and are almost exclusively located over the pristine areas of the oceans. These observed radiation and cloud changes are consistent with a link in which atmospheric ionization modulates aerosol's formation and growth, which survive to cloud condensation nuclei and ultimately affect cloud formation and thereby temporarily the radiative balance of Earth
Supersaturation and Critical Size of Cloud Condensation Nuclei in Marine Stratus Clouds
Observations of marine stratus clouds in clean air off the Californian coast reveal a functional relationship between the number of cloud condensation nuclei (CCN) and supersaturation. Satellite-derived liquid droplet density estimates the number density of CCN. Combining the estimated supersaturation using Köhler theory, global maps of supersaturation and the critical activation size of CCN are estimated. Here, we show that high supersaturation >0.5% persists over the oceans with a critical CCN size of 25–30 nm, which is smaller than the conventional wisdom of 60 nm. Independent support for such high supersaturation in the marine cloud is obtained from CCN measurements provided by the “Atmospheric Tomography Mission.” Higher supersaturation implies smaller activation size for CCN making cloud formation more sensitive to changes in aerosol nucleation.</p