737 research outputs found
Bounding the mass of the graviton using binary pulsar observations
The close agreement between the predictions of dynamical general relativity
for the radiated power of a compact binary system and the observed orbital
decay of the binary pulsars PSR B1913+16 and PSR B1534+12 allows us to bound
the graviton mass to be less than 7.6 x 10^{-20} eV with 90% confidence. This
bound is the first to be obtained from dynamic, as opposed to static-field,
relativity. The resulting limit on the graviton mass is within two orders of
magnitude of that from solar system measurements, and can be expected to
improve with further observations.Comment: 16 pages, 1 figure. Added appendix on other choices for mass ter
Identifying the Host Galaxy of Gravitational Wave Signals
One of the goals of the current LIGO-GEO-Virgo science run is to identify
transient gravitational wave (GW) signals in near real time to allow follow-up
electromagnetic (EM) observations. An EM counterpart could increase the
confidence of the GW detection and provide insight into the nature of the
source. Current GW-EM campaigns target potential host galaxies based on overlap
with the GW sky error box. We propose a new statistic to identify the most
likely host galaxy, ranking galaxies based on their position, distance, and
luminosity. We test our statistic with Monte Carlo simulations of GWs produced
by coalescing binaries of neutron stars (NS) and black holes (BH), one of the
most promising sources for ground-based GW detectors. Considering signals
accessible to current detectors, we find that when imaging a single galaxy, our
statistic correctly identifies the true host ~20% to ~50% of the time,
depending on the masses of the binary components. With five narrow-field images
the probability of imaging the true host increases to ~50% to ~80%. When
collectively imaging groups of galaxies using large field-of-view telescopes,
the probability improves to ~30% to ~60% for a single image and to ~70% to ~90%
for five images. For the advanced generation of detectors (c. 2015+), and
considering binaries within 100 Mpc (the reach of the galaxy catalogue used),
the probability is ~40% for one narrow-field image, ~75% for five narrow-field
images, ~65% for one wide-field image, and ~95% for five wide-field images,
irrespective of binary type.Comment: 5 pages, 2 figure
Bayesian Inference Analysis of Unmodelled Gravitational-Wave Transients
We report the results of an in-depth analysis of the parameter estimation
capabilities of BayesWave, an algorithm for the reconstruction of
gravitational-wave signals without reference to a specific signal model. Using
binary black hole signals, we compare BayesWave's performance to the
theoretical best achievable performance in three key areas: sky localisation
accuracy, signal/noise discrimination, and waveform reconstruction accuracy.
BayesWave is most effective for signals that have very compact time-frequency
representations. For binaries, where the signal time-frequency volume decreases
with mass, we find that BayesWave's performance reaches or approaches
theoretical optimal limits for system masses above approximately 50 M_sun. For
such systems BayesWave is able to localise the source on the sky as well as
templated Bayesian analyses that rely on a precise signal model, and it is
better than timing-only triangulation in all cases. We also show that the
discrimination of signals against glitches and noise closely follow analytical
predictions, and that only a small fraction of signals are discarded as
glitches at a false alarm rate of 1/100 y. Finally, the match between
BayesWave- reconstructed signals and injected signals is broadly consistent
with first-principles estimates of the maximum possible accuracy, peaking at
about 0.95 for high mass systems and decreasing for lower-mass systems. These
results demonstrate the potential of unmodelled signal reconstruction
techniques for gravitational-wave astronomy.Comment: 10 pages, 7 figure
Swift Pointing and Gravitational-Wave Bursts from Gamma-Ray Burst Events
The currently accepted model for gamma-ray burst phenomena involves the
violent formation of a rapidly rotating solar-mass black hole. Gravitational
waves should be associated with the black-hole formation, and their detection
would permit this model to be tested. Even upper limits on the
gravitational-wave strength associated with gamma-ray bursts could constrain
the gamma-ray burst model. This requires joint observations of gamma-ray burst
events with gravitational and gamma-ray detectors. Here we examine how the
quality of an upper limit on the gravitational-wave strength associated with
gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and
gravitational-wave detectors, and apply our results to the particular case of
the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave
detectors. A result of this investigation is a science-based ``figure of
merit'' that can be used, together with other mission constraints, to optimize
the pointing of the Swift telescope for the detection of gravitational waves
associated with gamma-ray bursts.Comment: iop style, 1 figure, 6 pages, presented at GWDAW 200
Plans for the LIGO–TAMA joint search for gravitational wave bursts
We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA Collaborations using data collected during February–April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers
Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts
The currently accepted model for gamma-ray burst phenomena involves the
violent formation of a rapidly rotating solar mass black hole. Gravitational
waves should be associated with the black-hole formation, and their detection
would permit this model to be tested, the black hole progenitor (e.g.,
coalescing binary or collapsing stellar core) identified, and the origin of the
gamma rays (within the expanding relativistic fireball or at the point of
impact on the interstellar medium) located. Even upper limits on the
gravitational-wave strength associated with gamma-ray bursts could constrain
the gamma-ray burst model. To do any of these requires joint observations of
gamma-ray burst events with gravitational and gamma-ray detectors. Here we
examine how the quality of an upper limit on the gravitational-wave strength
associated with gamma-ray burst observations depends on the relative
orientation of the gamma-ray-burst and gravitational-wave detectors, and apply
our results to the particular case of the Swift Burst-Alert Telescope (BAT) and
the LIGO gravitational-wave detectors. A result of this investigation is a
science-based ``figure of merit'' that can be used, together with other mission
constraints, to optimize the pointing of the Swift telescope for the detection
of gravitational waves associated with gamma-ray bursts.Comment: aastex, 14 pages, 2 figure
Robust Bayesian detection of unmodelled bursts
A Bayesian treatment of the problem of detecting an unmodelled gravitational
wave burst with a global network of gravitational wave observatories reveals
that several previously proposed statistics have implicit biases that render
them sub-optimal for realistic signal populations.Comment: 9 pages, 1 figure, submitted to CQG Amaldi proceedings special issu
Upper Limits from Counting Experiments with Multiple Pipelines
In counting experiments, one can set an upper limit on the rate of a Poisson
process based on a count of the number of events observed due to the process.
In some experiments, one makes several counts of the number of events, using
different instruments, different event detection algorithms, or observations
over multiple time intervals. We demonstrate how to generalize the classical
frequentist upper limit calculation to the case where multiple counts of events
are made over one or more time intervals using several (not necessarily
independent) procedures. We show how different choices of the rank ordering of
possible outcomes in the space of counts correspond to applying different
levels of significance to the various measurements. We propose an ordering that
is matched to the sensitivity of the different measurement procedures and show
that in typical cases it gives stronger upper limits than other choices. As an
example, we show how this method can be applied to searches for
gravitational-wave bursts, where multiple burst-detection algorithms analyse
the same data set, and demonstrate how a single combined upper limit can be set
on the gravitational-wave burst rate.Comment: 26 pages (CQG style), 8 figures. Added study of robustness of limits
- …