133 research outputs found
Ataxin-1 occupies the promoter region of E-cadherin in vivo and activates CtBP2-repressed promoter
AbstractAtaxin-1 is a polyglutamine protein of unknown function that is encoded by the ATXN1 gene in humans. To gain insight into the function of ataxin-1, we sought to identify proteins that interact with ataxin-1 through yeast two-hybrid screening. In this study, transcriptional corepressor CtBP2 was identified as a protein that interacted with ataxin-1. CtBP2 and ataxin-1 colocalized in the nucleus of mammalian cells. Since the E-cadherin promoter is a target of CtBP-mediated repression, the relationship between ataxin-1 and the E-cadherin promoter was investigated. Chromatin immunoprecipitation assays showed that CtBP2 and ataxin-1 were recruited to the E-cadherin promoter in mammalian cells. Luciferase assays using E-cadherin promoter reporter constructs revealed that the luciferase activity was enhanced as the level of ataxin-1 protein expression increased. CtBP2 overexpression decreased E-cadherin expression, but expression of ataxin-1 inversely increased the mRNA and protein levels of endogenous E-cadherin. Interestingly, siRNA experiments showed that the transcriptional activation of ataxin-1 was associated with the presence of CtBP2. This study demonstrates that ataxin-1 occupies the promoter region of E-cadherin in vivo and that ataxin-1 activates the promoter in a CtBP2-mediated transcriptional regulation manner
A Unified Compression Framework for Efficient Speech-Driven Talking-Face Generation
Virtual humans have gained considerable attention in numerous industries,
e.g., entertainment and e-commerce. As a core technology, synthesizing
photorealistic face frames from target speech and facial identity has been
actively studied with generative adversarial networks. Despite remarkable
results of modern talking-face generation models, they often entail high
computational burdens, which limit their efficient deployment. This study aims
to develop a lightweight model for speech-driven talking-face synthesis. We
build a compact generator by removing the residual blocks and reducing the
channel width from Wav2Lip, a popular talking-face generator. We also present a
knowledge distillation scheme to stably yet effectively train the
small-capacity generator without adversarial learning. We reduce the number of
parameters and MACs by 28 while retaining the performance of the
original model. Moreover, to alleviate a severe performance drop when
converting the whole generator to INT8 precision, we adopt a selective
quantization method that uses FP16 for the quantization-sensitive layers and
INT8 for the other layers. Using this mixed precision, we achieve up to a
19 speedup on edge GPUs without noticeably compromising the generation
quality.Comment: MLSys Workshop on On-Device Intelligence, 2023; Demo:
https://huggingface.co/spaces/nota-ai/compressed_wav2li
Recommended from our members
Atomic-Scale Scanning of Domain Network in the Ferroelectric HfO2 Thin Film
Ferroelectric HfO2-based thin films have attracted much interest in the utilization of ferroelectricity at the nanoscale for next-generation electronic devices. However, the structural origin and stabilization mechanism of the ferroelectric phase are not understood because the film is typically nanocrystalline with active yet stochastic ferroelectric domains. Here, electron microscopy is used to map the in-plane domain network structures of epitaxially grown ferroelectric Y:HfO2 films in atomic resolution. The ferroelectricity is confirmed in free-standing Y:HfO2 films, allowing for investigating the structural origin for their ferroelectricity by 4D-STEM, high-resolution STEM, and iDPC-STEM. At the grain boundaries of <111>-oriented Pca21 orthorhombic grains, a high-symmetry mixed-(R3m, Pnm21) phase is induced, exhibiting enhanced polarization due to in-plane compressive strain. Nanoscale Pca21 orthorhombic grains and their grain boundaries with mixed-(R3m, Pnm21) phases of higher symmetry cooperatively determine the ferroelectricity of the Y:HfO2 film. It is also found that such ferroelectric domain networks emerge when the film thickness is beyond a finite value. Furthermore, in-plane mapping of oxygen positions overlaid on ferroelectric domains discloses that polarization is suppressed at vertical domain walls, while it is active when domains are aligned horizontally with subangstrom domain walls. In addition, randomly distributed 180ยฐ charged domain walls are confined by spacer layers
์ค์๊ฐ ๊ฐ์ด ๋ฐ ์ก์ ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ ๊ธฐ๋ฒ์ ํตํ ์ด๋งค ๋๋ ธ์ ์์ ๊ตฌ์กฐ ๋ณํ ๋ฐ ํ์ฐ ๊ณผ์
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ๊ณต๊ณผ๋ํ ํํ์๋ฌผ๊ณตํ๋ถ, 2024. 2. ๋ฐ์ ์.์ต๊ทผ ์์ญ ๋
๋์ ๋๋
ธ ์
์๋ ๋ค์ํ ๊ณผํ ๋ถ์ผ์ ์์ฉ ๋ถ์ผ์์ ์ค์ํ ๊ตฌ์ฑ ์์๊ฐ ๋์๋ค. ์ด๋ฌํ ์์ฉ ๋ถ์ผ ์ค ์ด์ข
์ด๋งค๋ ์์ ํฌ๊ธฐ์ ๋
ํนํ ํน์ฑ๊ณผ ๊ธ์ ์ข
์ ๋ถ์ฐ์ ๊ทน๋ํํ ์ ์๋ ๋ฅ๋ ฅ์ผ๋ก ์ธํด ๋๋
ธ ์
์๊ฐ ์ฌ์ฉ๋๋ ๊ฐ์ฅ ์ค์ํ ๋ถ์ผ ์ค ํ๋์ด๋ค. ์ํ๋ ๊ตฌ์กฐ์ ํน์ฑ์ ๊ฐ์ง ์ด๋งค ๋๋
ธ์
์๋ฅผ ์ค๊ณํ๊ธฐ ์ํด์๋ ๋๋
ธ์
์์ ์์ ๊ตฌ์กฐ์ ์ด์ฒ๋ฆฌ ๋ฐ ์ก์ฒด์ ๊ฐ์ ๋ฐ์ ์กฐ๊ฑด์์์ ๊ตฌ์กฐ์ ๋ณํ์ ๋ํ ์ดํด๊ฐ ํ์ํ๋ค. ๊ทธ๋ฌ๋ ์ด๋งค ๋๋
ธ์
์์ ๊ตฌ์กฐ์ ๋ณํ๋ ์ด๋ฌํ ํํ์ ํ๊ฒฝ์์ ๊ฐ๋ณ ๋๋
ธ์
์๋ฅผ ์์ ๋จ์๋ก ์ง์ ๊ด์ฐฐํ๋ ๊ฒ์ด ์ด๋ ต๊ธฐ ๋๋ฌธ์ ์ดํดํ๊ธฐ ์ด๋ ต๋ค. ์ค์๊ฐ ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ(TEM)์ ๋ฐ์ ์กฐ๊ฑด์์ ๊ฐ๋ณ ๋๋
ธ ์
์๋ฅผ ์์ ํด์๋๋ก ๊ด์ฐฐํ ์ ์๋ ์ ๋งํ ๋๊ตฌ์ด๋ค. ๋ณธ ์ฐ๊ตฌ์์๋, ์ด์ฒ๋ฆฌ ์ค ๋ด์ง๋ ์ด๋งค ๋๋
ธ์
์์ ๊ตฌ์กฐ ๋ณํ ๊ณผ์ ๊ณผ ์ก์ฒด ๋ด ์ด๋งค ๋๋
ธ์
์์ ํ์ฐ ๊ณผ์ ์ ์ดํดํ๊ธฐ ์ํด ์ด๋งค์์ ๊ธฐ์ด์ ์ด๋ฉด์๋ ์ค์ฉ์ ์ผ๋ก ์ค์ํ ์ธ ๊ฐ์ง ๋๋
ธ์
์ ์์คํ
์ ์ฐ๊ตฌํ์ผ๋ฉฐ, ์ด๋ฅผ ์ํด ์ค์๊ฐ ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ๋ฒ์ ์ฌ์ฉํ๋ค.
์ธ๋ฆฌ์์ ๋ด์ง๋ ๋ฐฑ๊ธ์ ์์ง ๋ฉ์ปค๋์ฆ์ ์ดํดํ๋ ๊ฒ์ ๋ด๊ตฌ์ฑ ์๋ ์ด๋งค๋ฅผ ๊ฐ๋ฐํ๋ ๋ฐ ์์ด ๊ทผ๋ณธ์ ์ด๊ณ ์ค์ง์ ์ธ ์ค์์ฑ์ ๊ฐ๋๋ค. ์ธ๋ฆฌ์์ ์ง์ง๋ ๋ฐฑ๊ธ์ ์์ง์ ๊ณ ์จ ํ์ ์ ๋ด์ง์ฒด์ธ ์ธ๋ฆฌ์ ๋๋
ธ์
์์ ์์ง๊ณผ ํจ๊ป ๋ฐ์ํ๋ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์์ง๋ง, ์์ ์์ค ๊ณผ์ ์ ๋ํ ์ค์๊ฐ ์ง์ ๊ด์ฐฐ์ด ๋ถ์กฑํ์ฌ ๊ทธ ๋ฉ์ปค๋์ฆ์ ๋ํด ์๋ ค์ง ๋ฐ๊ฐ ๊ฑฐ์ ์๋ค. ์ ์ด๋ ๊ณต๊ฐ ๋ถํฌ์ ๋ค์ํ ์
์ ๊ฒฝ๊ณ ํํ๋ฅผ ๊ฐ์ง ์ธ๋ฆฌ์ ์
์์ ๋ด์ง๋ ๋ฐฑ๊ธ์ผ๋ก ๊ตฌ์ฑ๋ ๋ชจ๋ธ ์ด๋งค์์ ๋ฐฑ๊ธ์ ์ด ๊ฑฐ๋์ ์กฐ์ฌํ๊ธฐ ์ํด ์ค์๊ฐ ๋ฐ ์ผ๋ฐ ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ ๊ธฐ๋ฒ์ ์ด์ฉํ์ผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ๋ฐฑ๊ธ์ ์์ง์ด ๋ฐ์ํ๋ ์ ๋๋ ๋ด์ง์ฒด ์ธ๋ฆฌ์ ์
์์ ์์ง๊ณผ ์๊ด๊ด๊ณ๊ฐ ์๋ ๊ฒ์ ๋ฐํ๋ค. ์ธ๋ฆฌ์ ์
์์ ์์ง์ ์ ์ ๋ ฌ๋ ๊ฒฐ์ ๋ฆฝ๊ณ๋ฅผ ๊ฐ์ง ์ธ๋ฆฌ์ ์
์ ๊ฐ ์ ์ด์์ ๋ฐ์ํ ๊ฐ๋ฅ์ฑ์ด ๊ฐ์ฅ ๋์์ ๋ฐํ๋๋ค. ๋ณธ ๊ฒฐ๊ณผ๋ ์ธ๋ฆฌ์ ์์ง ์ค ํ๋ฉด ์ฌ๊ตฌ์ฑ์ด ๋ฐฑ๊ธ์ ์์ง์ ์ ๋ํ ๊ฐ๋ฅ์ฑ์ด ์์์ ์์ฌํฉ๋๋ค.
๋ฃจํ
๋์ ์๋ชจ๋์ ํ์์ํ ๋ฐ์์ ๊ฐ์ฅ ํ์ฑ์ด ๋์ ๊ธ์ ์์์ด๋ฉฐ, ํนํ Ru(0001) ํ๋ฉด์ ์์ ์์ค ๊ณ๋จ ๊ตฌ์กฐ์ธ B5 ์๋ฆฌ๊ฐ ํ์ฑ์ด ๋์ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์๋ค. ํ์ง๋ง ์ผ๋ฐ์ ์ผ๋ก ์ ์กฐ๋ ์ด๋งค์์ B5 ์๋ฆฌ์ ๋ฐ๋๋ ์ผ๋ฐ์ ์ผ๋ก ๋ฎ๋ค. ์ก๋ฐฉ์ ๊ณ ์งํ๋ถ์(h-BN)์ ๋ฃจํ
๋์ ๊ฒฐ์ ์ฑ ๋์นญ์ด ์ ์ฌํ๋ค๋ ์ ์ ์ฐฉ์ํ์ฌ B5 ๋ถ์๊ฐ ํ๋ถํ ๋ฃจํ
๋ ๋๋
ธ์
์๋ฅผ ํฉ์ฑํ์ผ๋ฉฐ, ๊ตฌ๋ฉด์์ฐจ๋ณด์ ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ์ ์ด์ฉํ์ฌ ์ก๊ฐํ ๋ชจ์์ ๋ฃจํ
๋ ๋๋
ธ์
์๊ฐ h-BN ์ํธ์์ ์ํผํ์์ผํ๊ฒ ํฉ์ฑ๋ ๊ฒ์ ํ์ธํ๋ค. B5 ์๋ฆฌ๋ ๋ฃจํ
๋ ๋๋
ธ์
์์ ๊ฐ์ฅ์๋ฆฌ๋ฅผ ๋ฐ๋ผ ๋ฐ๊ฒฌ๋์์ผ๋ฉฐ, ๋ฐ์ ์กฐ๊ฑด์์ ์ด๋งค๋ฅผ ํ์ฑํํ๋ฉด Ru ๋๋
ธ์
์์ ๋ชจ์์ด ๋ ์ ๋ฐ๋ฌ๋ ์ก๊ฐํ์ผ๋ก ๋ณํ๋์ด B5 ๋ถ์์ ์๊ฐ ์ฆ๊ฐํ๋ ๊ฒ์ ๋ฐํ๋๋ค.
์ฝ๋ก์ด๋ ์ด๋งค ๋๋
ธ ์
์์ ์ด ์ด๋๊ณผ ๊ทธ ์ํธ์์ฉ์ ๋๋
ธ ๊ณผํ์์ ๊ทผ๋ณธ์ ์ผ๋ก ์ค์ํ์ง๋ง, ๋๋
ธ ๊ท๋ชจ์์ ๊ฐ๋ณ ์
์์ ๋์ญํ์ ์ฐ๊ตฌํ ์ ์๋ ์ ์ ํ ๋ถ์ ๋๊ตฌ๊ฐ ์๊ธฐ ๋๋ฌธ์ ์ ๋์ ์ผ๋ก ์ ๊ทผํ๊ธฐ ์ด๋ ต๋ค. ์ฌ๊ธฐ์๋ ์ก์ฒด ์์ ๋ถ์ฐ๋์ด ์๋ 2 nm ํฌ๊ธฐ์ ๊ธ ๋๋
ธ์
์์ ์ด์ด๋๊ณผ ์์ง ์ญํ์ ๊ทธ๋ํ ์ก์์
ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ์ ์ฌ์ฉํ์ฌ ์ง์ ๊ด์ฐฐํ๋ค. ์์ ํฌ๊ธฐ์ ๋๋
ธ์
์๋ ๋ธ๋ผ์ด ์ด๋์ ๋ณด์ด์ง๋ง ๊ฐ์ฐ์์ ๋ณ์ ๋ถํฌ๋ฅผ ๋ฐ๋ฅด์ง ์์์ผ๋ฉฐ ์ด๋ ์ก์ ํ๊ฒฝ์ ๋์ ์ด์ง์ฑ์ผ๋ก ์ธํ ๋๋
ธ์
์์ ํ์ฐ ๊ณ์์ ๋ณ๋์ผ๋ก ์ธํ ๊ฒ์์ ๋ฐํ๋๋ค. ๋ํ, ๋ ๋๋
ธ์
์ ๊ฐ ์ ์ฐฉ ๊ณผ์ ์ ํ์ฐ์ ์ ํ๋ ๋๋
ธ์
์ ๋ณตํฉ์ฒด์ ํ์ฑ๊ณผ ํ๋ฉด ๋ฆฌ๊ฐ๋๊ฐ ์ค์ํ ์ญํ ์ ํ๋ ๋ฐฐํฅ ๋ถ์ฐฉ์ด๋ผ๋ ๋ ๊ฐ์ง ๊ณผ์ ์ ์ํด ๋ฐ์ํ๋ ๊ฒ์ ๋ฐ๊ฒฌํ์ฌ ์ ์ํ์๋ค.
์ฃผ์์ด : ์ค์๊ฐ ํฌ๊ณผ์ ์ํ๋ฏธ๊ฒฝ, ๋๋
ธ์
์, ์ด๋งค, ๊ตฌ์กฐ ๋ณํ, ํ์ฐ
ํ ๋ฒ : 2018-21563
์ฑ ๋ช
: ๊ฐ์ฑ์In recent decades, nanoparticles have become important building blocks for a wide range of scientific fields and applications. Among these applications, heterogeneous catalysis is one of the most important areas where nanoparticles are used, due to their unique properties at small sizes and their ability to maximize the dispersion of metal species. The design of catalytic nanoparticles with desired structures and properties requires an understanding of the atomic structures of the nanoparticles and the structural evolution under reaction conditions, such as thermal treatments and in liquid. However, the structural evolution of catalytic nanoparticles is less understood due to the challenges of directly observing individual nanoparticles in such chemically active environments at the atomic scale. In situ transmission electron microscopy (TEM) is a promising tool that allows the observation of individual nanoparticles under reaction conditions at atomic resolution. Here, in situ and ex situ TEM are used to study three nanoparticle systems of fundamental and practical importance in catalysis to understand the structural annealing of supported catalytic nanoparticles during heat treatments and the diffusion of catalytic nanoparticles in liquid.
Understanding the sintering mechanism of platinum (Pt) supported on ceria (CeO2) is of fundamental and practical importance for the development of durable catalysts. The sintering of Pt supported on CeO2 is known to occur along with the aggregation of CeO2 support nanoparticles during high temperature reduction, but little is known about its mechanism due to the lack of direct in situ observations of the atomic scale processes. In situ and ex situ TEM are used to investigate the thermal behavior of Pt on CeO2 in model catalysts consisting of Pt on CeO2 particles with controlled spatial distributions and different grain boundary conformations. The extent to which Pt sintering occurs is correlated with the aggregation of the supporting CeO2 particles. CeO2 particle aggregation is most likely to occur at particle contacts with well-aligned grain boundaries, which serve as sites for the most significant Pt sintering. The results suggest that surface reconstruction during CeO2 aggregation is likely to induce Pt sintering.
Ruthenium (Ru) is the most active metal element for the ammonia dehydrogenation reaction. The B5 site, an atomic level on Ru(0001) of Ru, is known to exhibit the highest catalytic activity for ammonia dehydrogenation, but the populations of B5 sites in prepared catalysts are typically low. Here, Ru nanoparticles rich in B5 sites are synthesized based on the similarity in the crystal symmetries of hexagonal boron nitride (h-BN) and Ru. Aberration-corrected TEM shows that hexagonal Ru nanoparticles are epitaxially synthesized on h-BN sheets. The B5 sites are identified along the edges of the Ru nanoparticles. Activation of the catalyst under reaction conditions increases the population of B5 sites by transforming the shape of the Ru nanoparticles into better developed hexagons. The electron density of the Ru nanoparticles also increases during activation.
The thermal motion of colloidal catalytic nanoparticles and their interactions are of fundamental importance in nanoscience, but are difficult to access quantitatively, mainly due to the lack of appropriate analytical tools to study the dynamics of individual particles at the nanoscale. Here, the stochastic thermal motion and coalescence dynamics of gold nanoparticles as small as 2 nm in liquid are directly observed using graphene liquid cell (GLC) TEM. The small nanoparticles show Brownian but non-Gaussian motion, indicating the fluctuation of the diffusion coefficient of the nanoparticles due to the dynamic heterogeneity of the liquid environment. Furthermore, the coalescence of two nanoparticles occurs by two processes: the diffusion-limited formation of a transient nanoparticle complex and subsequent coalescence by oriented attachment, in which surface-passivating ligands play a critical role.
Keyword: In situ transmission electron microscopy (TEM), nanoparticle, catalyst, structural annealing, diffusion
Student Number: 2018-21563Chapter 1 Introduction . 1
1.1. Structural dynamics of catalytic nanoparticles in reaction 1
1.2. In situ transmission electron microscopy for mechanistic understanding of
single nanoparticle reactions 2
1.3. Purpose of research . 4
Chapter 2 Aggregation of CeO2 particles with aligned grains drives sintering of
Pt single atoms in Pt/CeO2 catalysts 6
2.1. Introduction . 6
2.2. Methods . 7
2.2.1. Sample preparation . 7
2.2.2. H2-temperature programmed reduction (H2-TPR) 8
2.2.3. X-ray diffraction (XRD) 8
2.2.4. Raman spectroscopy 8
2.2.5. Surface area measurement 9
2.2.6. Transmission electron microscopy 9
2.3. Results and discussion. 11
2.3.1. Catalyst preparation and structural analysis . 11
2.3.2. Relationship between CeO2 aggregation and Pt sintering investigated by
the control of interparticle distance 13
2.3.3. Effects of grain boundaries in aggregated CeO2 domains for Pt sintering
. 14
2.3.4. Conclusion 17
Chapter 3 Heteroepitaxial growth of B5-site-rich Ru nanoparticles guided by h-
BN for low-temperature NH3 dehydrogenation 38
3.1. Introduction 38
3.2. Methods 40
vi
3.2.1. Catalyst synthesis 40
3.2.2. Adsorption and desorption isotherms 42
3.2.3. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 43
3.2.4. X-ray photoelectron spectroscopy (XPS) 44
3.2.5. Transmission electron microscopy (TEM) 44
3.2.6. Catalytic activity test 45
3.2.7. Density functional theory (DFT) calculation 47
3.3. Results and discussion. 48
3.3.1. Epitaxial growth of B5-site-rich Ru nanoparticles on h-BN. 48
3.3.2. Activation of Ru/h-BN catalyst 53
3.3.3. Catalytic performances 56
3.3.4. Conclusion 60
Chapter 4 Real-space imaging of nanoparticle transport and interaction
dynamics in graphene liquid cell TEM 95
4.1. Introduction 95
4.2. Methods 98
4.2.1. GLC preparation 98
4.2.2. Liquid-phase TEM 99
4.2.3. Single-particle tracking and drift correction . 100
4.2.4. Off-lattice random walk model in dynamically heterogeneous
environment 103
4.2.5. Kinetics of two-step coalescence between ligand-passivated nanoparticles
120
4.2.6. Survival probability calculation 129
4.3. Results and discussion 131
4.3.1. GLC TEM of nanoparticles in liquid 131
4.3.2. Fickian diffusion of nanoparticles in a GLC . 132
4.3.3. Fluctuation in diffusion coefficient of nanoparticles in a GLC 134
4.3.4. Origin of diffusion coefficient fluctuations 137
vii
4.3.5. Precise prediction of displacement distribution of nanoparticles in a finite
pixel size 139
4.3.6. Encounter complex formation and coalescence of nanoparticles 140
4.3.7. Conclusion . 144
Chapter 5 Summary and Conclusions 192
Bibliography 194
๊ตญ ๋ฌธ ์ด ๋ก . 206
List of Publications 209
viii๋ฐ
Machine Learning-Based Anomaly Detection on Seawater Temperature Data with Oversampling
This study deals with a method for anomaly detection in seawater temperature data using machine learning methods with oversampling techniques. Data were acquired from 2017 to 2023 using a ConductivityโTemperatureโDepth (CTD) system in the Pacific Ocean, Indian Ocean, and Sea of Korea. The seawater temperature data consist of 1414 profiles including 1218 normal and 196 abnormal profiles. This dataset has an imbalance problem in which the amount of abnormal data is insufficient compared to that of normal data. Therefore, we generated abnormal data with oversampling techniques using duplication, uniform random variable, Synthetic Minority Oversampling Technique (SMOTE), and autoencoder (AE) techniques for the balance of data class, and trained Interquartile Range (IQR)-based, one-class support vector machine (OCSVM), and Multi-Layer Perceptron (MLP) models with a balanced dataset for anomaly detection. In the experimental results, the F1 score of the MLP showed the best performance at 0.882 in the combination of learning data, consisting of 30% of the minor data generated by SMOTE. This result is a 71.4%-point improvement over the F1 score of the IQR-based model, which is the baseline of this study, and is 1.3%-point better than the best-performing model among the models without oversampling data
Prediction of the film thickness distribution and pattern change during film insert thermoforming
Partitioning tracer method for quantifying the residual saturation of refined petroleum products in saturated soil
Fabrication of Micro-Patterned Chip with Controlled Thickness for High-Throughput Cryogenic Electron Microscopy
- โฆ