4,844 research outputs found
Leukoaraiosis is associated with pneumonia after acute ischemic stroke
Diagnostic criteria for stroke associated pneumonia based on the CDC criteria. (DOCX 25 kb
Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in Microchannels
Direct evidence is provided for the transition from surface conduction (SC) to electro-osmotic flow (EOF) above a critical channel depth (d) of a nanofluidic device. The dependence of the overlimiting conductance (OLC) on d is consistent with theoretical predictions, scaling as d[superscript −1] for SC and d[superscript 4 over 5] for EOF with a minimum around d=8 μm. The propagation of transient deionization shocks is also visualized, revealing complex patterns of EOF vortices and unstable convection with increasing d. This unified picture of surface-driven OLC can guide further advances in electrokinetic theory, as well as engineering applications of ion concentration polarization in microfluidics and porous media.Basic Science Research Program (Grant 2013R1A1A1008125)Global Frontier Project (Center for Integrated Smart Sensor. Grant CISS-2011-0031870)Future Based Technology Development Program (Nano Fields) (Grant 2012-0001033)Korea. Ministry of Health and Welfare (Grant HI13C1468)Korea. Ministry of Health and Welfare (Grant HI14C0559)Korea (South). Ministry of Science, ICT and Future Planning (Korean Health Technology RND Project
A Feasibility of Low Intensity Ultrasound Stimulation for Treatment or Prevention of Osteoporosis and Its-Related Fracture
Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models
Harmful algal blooms have negatively affected the aquaculture industry and aquatic ecosystems globally. Remote sensing using satellite sensor systems has been applied on large spatial scales with high temporal resolutions for effective monitoring of harmful algal blooms in coastal waters. However, oceanic color satellites have limitations, such as low spatial resolution of sensor systems and the optical complexity of coastal waters. In this study, bands 1 to 4, obtained from Landsat-8 Operational Land Imager satellite images, were used to evaluate the performance of empirical ocean chlorophyll algorithms using machine learning techniques. Artificial neural network and support vector machine techniques were used to develop an optimal chlorophyll-a model. Four-band, four-band-ratio, and mixed reflectance datasets were tested to select the appropriate input dataset for estimating chlorophyll-a concentration using the two machine learning models. While the ocean chlorophyll algorithm application on Landsat-8 Operational Land Imager showed relatively low performance, the machine learning methods showed improved performance during both the training and validation steps. The artificial neural network and support vector machine demonstrated a similar level of prediction accuracy. Overall, the support vector machine showed slightly superior performance to that of the artificial neural network during the validation step. This study provides practical information about effective monitoring systems for coastal algal blooms
Cardiac Angiosarcoma on the Right Atrium: Two Cases
We detected two cases of right atrial angiosarcoma that had a similar appearance on imaging studies. Although the surgical findings were similar for the two patients, one had a clear resection margin, while the other had tumor cells in the resection margin on frozen biopsy. We suggest that preoperative data on magnetic resonance imaging and computed tomography in patients with angiosarcomas may not predict the exact extent of surgical resection or prognostic outcomes
Site-Specific Bioconjugation of an Organometallic Electron Mediator to an Enzyme with Retained Photocatalytic Cofactor Regenerating Capacity and Enzymatic Activity
Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM) has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(P)H being readily available to a redox enzyme, when the local NAD(P)H concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH). A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activityope
Method and and apparatus for processing a signal
A method of processing a signal is disclosed. The present invention includes receiving (a) downmix signal being generated from plural-channel signal and (b) spatial information indicating attribute of the plural-channel signal in order to upmix the downmix signal and including phase shift flag indicating whether phase of a frame of at least one channel of the plural-channel signal is shifted; obtaining inter-channel phase difference (IPD) coding flag indicating whether IPD value is used to the spatial information from a header of the spatial information; obtaining IPD mode flag indicating whether the IPD value is used to frame of the spatial information from the frame based on the IPD coding flag; obtaining the IPD value of parameter band in the frame, based on the IPD mode flag; upmixing plural-channel signal by applying the IPD value to the downmix signal; and shifting the phase of the frame of the at least one channel of the plural-channel signal based on the phase shift flag
Highly precise AMCW time-of-flight scanning sensor based on digital-parallel demodulation
In this paper, a novel amplitude-modulated continuous wave (AMCW)
time-of-flight (ToF) scanning sensor based on digital-parallel demodulation is
proposed and demonstrated in the aspect of distance measurement precision.
Since digital-parallel demodulation utilizes a high-amplitude demodulation
signal with zero-offset, the proposed sensor platform can maintain extremely
high demodulation contrast. Meanwhile, as all cross correlated samples are
calculated in parallel and in extremely short integration time, the proposed
sensor platform can utilize a 2D laser scanning structure with a single photo
detector, maintaining a moderate frame rate. This optical structure can
increase the received optical SNR and remove the crosstalk of image pixel
array. Based on these measurement properties, the proposed AMCW ToF scanning
sensor shows highly precise 3D depth measurement performance. In this study,
this precise measurement performance is explained in detail. Additionally, the
actual measurement performance of the proposed sensor platform is
experimentally validated under various conditions
- …