7 research outputs found

    RAWUL: A new ubiquitin-like domain in PRC1 Ring finger proteins that unveils putative plant and worm PRC1 orthologs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polycomb group (PcG) proteins are a set of chromatin-modifying proteins that play a key role in epigenetic gene regulation. The PcG proteins form large multiprotein complexes with different activities. The two best-characterized PcG complexes are the PcG repressive complex 1 (PRC1) and 2 (PRC2) that respectively possess histone 2A lysine 119 E3 ubiquitin ligase and histone 3 lysine 27 methyltransferase activities. While PRC2-like complexes are conserved throughout the eukaryotic kingdoms, PRC1-like complexes have only been described in Drosophila and vertebrates. Since both complexes are required for the gene silencing mechanism in Drosophila and vertebrates, how PRC1 function is realized in organisms that apparently lack PRC1 such as plants, is so far unknown. In vertebrates, PRC1 includes three proteins, Ring1B, Ring1A, and Bmi-1 that form an E3 ubiquitin ligase complex. These PRC1 proteins have an N-terminally located Ring finger domain associated to a poorly characterized conserved C-terminal region.</p> <p>Results</p> <p>We obtained statistically significant evidences of sequence similarity between the C-terminal region of the PRC1 Ring finger proteins and the ubiquitin (Ubq)-like family proteins, thus defining a new Ubq-like domain, the RAWUL domain. In addition, our analysis revealed the existence of plant and worm proteins that display the conserved combination of a Ring finger domain at the N-terminus and a RAWUL domain at the C-terminus.</p> <p>Conclusion</p> <p>Analysis of the conserved domain architecture among PRC1 Ring finger proteins revealed the existence of long sought PRC1 protein orthologs in these organisms, suggesting the functional conservation of PRC1 throughout higher eukaryotes.</p

    Characterization of a Selenocystine-Resistant Carrot Cell Line

    No full text

    Cycloheximide Resistance in Carrot Culture: A Differentiated Function

    No full text

    The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development

    No full text
    Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 (RML1) gene are unable to establish an active postembryonic meristem in the root apex, This mutation abolishes cell division in the root but not in the shoot. We report the molecular cloning of the RML1 gene, which encodes the first enzyme of glutathione (GSH) biosynthesis, gamma-glutamylcysteine synthetase, and which is allelic to CADMIUM SENSITIVE2. The phenotype of the rml1 mutant, which was also evident in the roots of wild-type Arabidopsis and tobacco treated with an inhibitor of GSH biosynthesis, could be relieved by applying GSH to rml1 seedlings. By using a synchronized tobacco cell suspension culture, we showed that the G(1)-to-S phase transition requires an adequate level of GSH, These observations suggest the existence of a GSH-dependent developmental pathway essential for initiation and maintenance of cell division during postembryonic root development
    corecore