95 research outputs found

    Building Decision Procedures in the Calculus of Inductive Constructions

    Get PDF
    It is commonly agreed that the success of future proof assistants will rely on their ability to incorporate computations within deduction in order to mimic the mathematician when replacing the proof of a proposition P by the proof of an equivalent proposition P' obtained from P thanks to possibly complex calculations. In this paper, we investigate a new version of the calculus of inductive constructions which incorporates arbitrary decision procedures into deduction via the conversion rule of the calculus. The novelty of the problem in the context of the calculus of inductive constructions lies in the fact that the computation mechanism varies along proof-checking: goals are sent to the decision procedure together with the set of user hypotheses available from the current context. Our main result shows that this extension of the calculus of constructions does not compromise its main properties: confluence, subject reduction, strong normalization and consistency are all preserved

    Coq Modulo Theory - Short Paper

    Get PDF
    International audienceCoq Modulo Theory (CoqMT) is an extension of the Coq proof assistant incorporating, in its computational mechanism, validity entailment for user-defined first-order equational theories. Such a mechanism strictly enriches the system (more terms are typable), eases the use of dependent types and provides more automation during the development of proofs. CoqMT improves over the Calculus of Congruent Inductive Constructions by getting rid of various restrictions and simplifying the type-checking algorithm and the integration of first-order decision procedures

    Certification of SAT Solvers in Coq

    Get PDF
    International audienceWe describe a fully portable, open source certifier for traces of SAT problems produced by zChaff. It can also be easily adapted for MiniSat, PicoSat or BooleForce, and we have done it for PicoSat. Our certifier has been developed with the proof assistant Coq. We give some figures based on the pigeon hole, comparing both PicoSat and zChaff on the one hand, and our certifier with another certifier also developed with Coq

    Computer-aided proofs for multiparty computation with active security

    Get PDF
    Secure multi-party computation (MPC) is a general cryptographic technique that allows distrusting parties to compute a function of their individual inputs, while only revealing the output of the function. It has found applications in areas such as auctioning, email filtering, and secure teleconference. Given its importance, it is crucial that the protocols are specified and implemented correctly. In the programming language community it has become good practice to use computer proof assistants to verify correctness proofs. In the field of cryptography, EasyCrypt is the state of the art proof assistant. It provides an embedded language for probabilistic programming, together with a specialized logic, embedded into an ambient general purpose higher-order logic. It allows us to conveniently express cryptographic properties. EasyCrypt has been used successfully on many applications, including public-key encryption, signatures, garbled circuits and differential privacy. Here we show for the first time that it can also be used to prove security of MPC against a malicious adversary. We formalize additive and replicated secret sharing schemes and apply them to Maurer's MPC protocol for secure addition and multiplication. Our method extends to general polynomial functions. We follow the insights from EasyCrypt that security proofs can be often be reduced to proofs about program equivalence, a topic that is well understood in the verification of programming languages. In particular, we show that in the passive case the non-interference-based definition is equivalent to a standard game-based security definition. For the active case we provide a new NI definition, which we call input independence

    From formal proofs to mathematical proofs: a safe, incremental way for building in first-order decision procedures

    Get PDF
    We investigate here a new version of the Calculus of Inductive Constructions (CIC) on which the proof assistant Coq is based: the Calculus of Congruent Inductive Constructions, which truly extends CIC by building in arbitrary first-order decision procedures: deduction is still in charge of the CIC kernel, while computation is outsourced to dedicated first-order decision procedures that can be taken from the shelves provided they deliver a proof certificate. The soundness of the whole system becomes an incremental property following from the soundness of the certificate checkers and that of the kernel. A detailed example shows that the resulting style of proofs becomes closer to that of the working mathematician

    A Relational Logic for Higher-Order Programs

    Full text link
    Relational program verification is a variant of program verification where one can reason about two programs and as a special case about two executions of a single program on different inputs. Relational program verification can be used for reasoning about a broad range of properties, including equivalence and refinement, and specialized notions such as continuity, information flow security or relative cost. In a higher-order setting, relational program verification can be achieved using relational refinement type systems, a form of refinement types where assertions have a relational interpretation. Relational refinement type systems excel at relating structurally equivalent terms but provide limited support for relating terms with very different structures. We present a logic, called Relational Higher Order Logic (RHOL), for proving relational properties of a simply typed λ\lambda-calculus with inductive types and recursive definitions. RHOL retains the type-directed flavour of relational refinement type systems but achieves greater expressivity through rules which simultaneously reason about the two terms as well as rules which only contemplate one of the two terms. We show that RHOL has strong foundations, by proving an equivalence with higher-order logic (HOL), and leverage this equivalence to derive key meta-theoretical properties: subject reduction, admissibility of a transitivity rule and set-theoretical soundness. Moreover, we define sound embeddings for several existing relational type systems such as relational refinement types and type systems for dependency analysis and relative cost, and we verify examples that were out of reach of prior work.Comment: Submitted to ICFP 201

    Proving uniformity and independence by self-composition and coupling

    Full text link
    Proof by coupling is a classical proof technique for establishing probabilistic properties of two probabilistic processes, like stochastic dominance and rapid mixing of Markov chains. More recently, couplings have been investigated as a useful abstraction for formal reasoning about relational properties of probabilistic programs, in particular for modeling reduction-based cryptographic proofs and for verifying differential privacy. In this paper, we demonstrate that probabilistic couplings can be used for verifying non-relational probabilistic properties. Specifically, we show that the program logic pRHL---whose proofs are formal versions of proofs by coupling---can be used for formalizing uniformity and probabilistic independence. We formally verify our main examples using the EasyCrypt proof assistant
    • …
    corecore